Spelling suggestions: "subject:"parlement d'one"" "subject:"défendent d'one""
1 |
Instabilités agéostrophiques des écoulements baroclines dans l'atmosphère et dans l'océan et leur évolution non-linéaireGula, Jonathan 22 October 2009 (has links) (PDF)
Les écoulements atmosphériques et océaniques sont habituellement séparés en une partie lente, proche de l'équilibre géostrophique, et une partie rapide qui interagissent faiblement. Les instabilités agéostrophiques procurent néanmoins un mécanisme capable de coupler les mouvements équilibrés et non-équilibrés. L'étude de tels mécanismes dans cette thèse est d'abord effectuée par des études systématiques de stabilité linéaire dans le modèle de l'eau peu profonde. L'instabilité de Rossby-Kelvin (RK), issue du couplage barocline d'une onde de Rossby (équilibrée) et d'une onde de Kelvin ou de Poincaré (non-équilibrées), est mise en évidence dans un canal. Ces résultats sont étendus à un anneau en géométrie cylindrique et montrent que dans les configurations proches des dispositifs expérimentaux il peut y avoir une compétition entre l'instabilité RK et l'instabilité barocline classique. Les instabilités des courants côtiers, caractérisés par la présence d'un bord vertical et d'un "outcropping", sont ensuite étudiées de manière exhaustive. Les instabilités dues à l'interaction d'un mode frontal et d'une onde de Kelvin (KF) ou d'une onde de Rossby (RF) sont mises en évidence. Le développement non-linéaire de ces instabilités est étudié dans le modèle de l'eau peu profonde par une méthode numérique aux volumes finis et dans un fluide continument stratifié à l'aide d'un modèle méso-échelle. Ces simulations montrent que les instabilités RK et KF ont un développement non-linéaire marqué par une croissance à amplitude finie et une saturation. Le déferlement de l'onde de Kelvin conduit alors à la formation d'un front de Kelvin, zone localisée de mélange et de dissipation, à l'émission d'ondes d'inertie-gravité et à la réorganisation de l'écoulement moyen. Dans le cas des courants côtiers cette réorganisation est suivie du développement d'une instabilité secondaire qui conduit à la formation et au détachement de vortex.
|
2 |
Intensification rapide des cyclones tropicaux du sud-ouest de l'océan Indien : dynamique interne et influences externesLeroux, Marie-Dominique 13 December 2012 (has links) (PDF)
La prévision d'intensité des cyclones tropicaux est un enjeu opérationnel majeur qui connaît encore de graves déficiences. Cette thèse vise à mieux comprendre les mécanismes d'intensification cyclonique en lien avec un thalweg d'altitude originaire des moyennes latitudes et à mettre en évidence le rôle des conditions initiales pour la prévision cyclonique. Une première étude climatologique définit un seuil objectif pour l'intensification rapide des cyclones dans le Sud-Ouest de l'océan Indien, caractérise la localisation et la fréquence des interactions cyclone-thalweg, tout en identifiant les configurations propices à l'intensification. Le cas de Dora (2007) est identifié pour simuler l'interaction grâce à un modèle numérique en assimilant les caractéristiques du cyclone dans une analyse globale. L'interaction cyclone-thalweg simulée est particulièrement complexe. Dans un premier temps, du tourbillon potentiel provenant du thalweg se superpose au coeur du cyclone en moyenne et en haute troposphère. Ensuite, un forçage dynamique induit une accélération de la circulation cyclonique tangentielle dans une région extérieure au mur de l'oeil principal, provoquant un cycle de remplacement du mur de l'oeil. Le modèle simule correctement les différentes phases d'intensification du cyclone, ce qui permet de relier l'intensification aux effets du thalweg sur le cyclone. Une deuxième étude numérique dans le Pacifique Nord-Ouest met en évidence le rôle de la structure initiale d'un cyclone sur la prévision de trajectoire et d'intensité. La prévision cyclonique future progressera en affinant la structure du coeur cyclonique spécifiée dans l'état initial de la prévision.
|
3 |
Intensification rapide des cyclones tropicaux du sud-ouest de l’océan Indien (SWIO) : dynamique interne et influences externes / Tropical Cyclone rapid intensification in the southwest Indian ocean : internal processes and external influencesLeroux, Marie-Dominique 13 December 2012 (has links)
Dans un contexte international, la prévision d'intensité des cyclones tropicaux connaît encore de graves déficiences tandis que la prévision de trajectoire de ces phénomènes météorologiques extrêmes s'est grandement améliorée ces dernières décennies. Une source d'erreur pour la prévision d'intensité est le manque de connaissance des processus physiques qui régissent l'évolution de la structure et de l'intensité des cyclones. Cette thèse, proposée dans le cadre des responsabilités du Centre Météorologique Régional Spécialisé (CMRS) de la Réunion et des axes de recherche du LACy et du CNRM, a pour but d'améliorer la prévision numérique et la compréhension des mécanismes de changement de structure et d'intensité des cyclones dans le sud-ouest de l'océan Indien. On observe statistiquement dans le bassin de fréquents déferlements d'ondes de Rossby qui correspondent à une intrusion des talwegs d'altitude depuis les moyennes latitudes vers les régions où évoluent les cyclones. Ces déferlements advectent dans la troposphère tropicale de l'air d'origine stratosphérique à fort tourbillon potentiel (PV). Le cœur d'un cyclone tropical étant caractérisé par un vortex cyclonique de fort PV, il est donc légitime de se demander si de tels talwegs sont capables de « nourrir » un cyclone en déferlant jusqu'à lui, et l'intensifier par superposition de PV. D'un autre côté, l'approche d'un talweg est associée à d'autres facteurs pouvant jouer en défaveur d'une intensification, comme un fort cisaillement vertical de vent. L'étude de processus est réalisée sur le cyclone Dora (2007) avec le modèle opérationnel du CMRS sur le bassin, Aladin-Réunion. Ce modèle hydrostatique à aire limitée bénéficie d'une résolution horizontale de 8 km et de son propre schéma d'assimilation 3Dvar avec bogus de vent. Un tel bogus permet d'affiner la structure du cyclone à l'instant initial en ajoutant des observations de vent déduites d'un profil analytique et des paramètres de structure du cyclone estimés par les images satellites. Des diagnostiques sur les variables thermodynamiques en sortie de modèle montrent que la phase d'intensification rapide de Dora est bien associée à l'advection de tourbillon potentiel (PV) en provenance du talweg. Bien que fortement cisaillé, le système parvient à s'intensifier grâce à la forte inclinaison du talweg qui advecte du PV au cœur du cyclone en 2 temps et à 2 niveaux (haute et moyenne troposphère). Lorsque le talweg est au plus proche du cyclone, il force un processus dynamique interne appelé « cycle de remplacement du mur de l'œil ». On observe une inclinaison et un renforcement des vitesses verticales à l'extérieur du mur de l'œil principal, associé à une accélération de la circulation cyclonique tangentielle par advection de moment angulaire sur toute l'épaisseur de la troposphère dans cette zone annulaire (mis en évidence par les flux d'Eliassen-Palm). Un second maximum de vent relatif apparaît alors et une deuxième phase d'intensification rapide s'ensuit avec la contraction du mur secondaire. Le forçage de processus internes par une influence externe (un talweg) semble donc être le moteur de l'intensification rapide de Dora dans un environnement cisaillé, et potentiellement celui d'autres cyclones dans le bassin qui sont approchés par des talwegs d'altitude. Les prévisionnistes du CMRS sont invités à surveiller les champs de PV de tels systèmes, en attendant que de plus amples diagnostiques soient réalisés avec l'outil d'inversion du tourbillon potentiel développé sur le modèle global Arpège. / Despite significant improvements in Tropical Cyclone (TC) track forecasts over the past few decades, anticipating the sudden intensity changes of TCs remains a major operational issue. The main purpose of this thesis is to analyze TC rapid intensification processes in relation with external forcing induced by upper-level troughs originating from the mid-latitudes. The impact of initial storm structure on storm evolution and prediction is also documented. An objective definition for rapid intensification in the southwest Indian Ocean is first proposed. The location and frequency of TC-trough interactions are identified, as well as TC-trough arrangements conducive to TC intensification. An interesting study case, TC Dora (2007), is chosen to run numerical simulations initialized with synthetic TC observations blended in a global analysis. The simulated TC-trough interaction is intricate with potential vorticity (PV) advection from the trough into the TC core at mid and upper levels. Vortex intensification first occurs inside the eyewall and results from PV superposition. Further intensification is associated with a subsequent secondary eyewall formation triggered by external forcing from the trough. The numerical model is able to reproduce the main features associated with outer eyewall spin-up, inner eyewall spin-down, and their effects on vortex intensity changes. Another numerical study examines typhoons in the northwest Pacific and demonstrates the critical role played by initial vortex structure in TC track and intensity prediction. Upgrading the initial specification of a TC inner-core structure in numerical models is recommended for future TC prediction improvements.
|
Page generated in 0.069 seconds