• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structures de Poisson Logarithmiques : invariants cohomologiques et préquantification

Dongho, Joseph 05 January 2012 (has links) (PDF)
L'objectif de cette thèse est de proposer des critères de préquanti fication des structures de Poisson à singularités portées par un diviseur libre d'une variété complexe de dimension finie. Pour cela, nous partons d'une construction algébrique des di fférentielles formelles logarithmiques le long d'un idéal finiment engendré et propre d'une algèbre commutative, pour introduire la notion d'algèbre de Poisson logarithmique. Puis, nous montrons que de telles structures de Poisson induisent un nouvel invariant cohomologique ; ceci par le billet d'une structure d'algèbre de Lie-Rinehart qu'elles induisent sur le module des di fférentielles formelles logarithmiques. Grâce à ce dernier, nous étudions les conditions d'intégralité des telles structures de Poisson. Tout d'abord, nous montrons que l'application hamiltonienne de toute structure de Poisson logarithmique se prolonge sur la module des di fférentielles formelles logarithmiques et induit une structure d'algèbre de Lie-Rinehart sur ce dernier. De plus l'image de cette application est contenue dans le module des dérivations logarithmiques. Nous appelons cohomologie de Poisson logarithmique la cohomologie induite par cette représentation. Par la suite, nous montrons sur quelques exemples que les groupes de cohomologies de Poisson et ceux de Poisson logarithmique sont en générale di fférentes ; bien qu'ils coïncident dans le cas des structures de Poisson logsymplectiques. Nous terminons par une étude des conditions d'intégralité de telles structures au moyen de cette cohomologie.

Page generated in 0.1561 seconds