• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Synthesis and reactivity of metal complexes containing functionalized N-heterocyclic carbene ligands for catalytic applications / Synthèse et réactivité de complexes métalliques contenant des ligands carbéniques N-hétérocycliques et des ligands fonctionnels pour des applications catalytiques

Ai, Pengfei 24 September 2015 (has links)
L’objectif de ce travail fut la synthèse de ligands fonctionnels de type N,N'-diphosphanyl-NHC (NHC = carbènes N-hétérocycliques) et l’étude de leur chimie de coordination. La synthèse du nouveau ligand tridentate, stable et rigide, N,N'-diphosphanyl-imidazol-2-ylidene a permis des études expérimentales et théoriques et l’accès à des complexes mono-, di-, tri-, penta-, et hexanucléaires des métaux du groupe 11 (Cu, Ag et Au) originaux et aux propriétés structurales uniques. Les complexes mono- et dinucléaires avec un ou deux atomes de phosphore libres ont permis d’accéder à des complexes hétérotrinucléaires à interactions d10-d10 qui sont luminescents. La transmétallation partielle ou totale des complexes homotrinucléaires de Cu ou d’Ag avec des réactifs contenant du Pd(0) ont conduit à des complexes hétérotrinucléaires à interactions d10-d10. En plus de son comportement pontant, ce ligand peut se agir en chélate dans des complexes du palladium et du chrome. Dans le cas du Cr(III), ils montrent une activité catalytique en oligomérisation de l’éthylène supérieure à celle des complexes du Cr(II) et conduisent principalement à des oligomères. / The purpose of this work was the synthesis of N,N'-diphosphanyl-functionalized NHC ligands andtheir coordination chemistry. The novel stable and rigid tridentate N,N'-diphosphanyl-imidazol-2-ylidene was synthesized and experimental and computational information on its stability weregained. It served as a unique platform for the synthesis of novel mono-, di-, tri-, penta-, hexanuclear complexes with the coinage metals (Cu, Ag and Au), exhibiting rare structural features. The mono- and dinuclear complexes with one or two dangling P-donors provided rational access to heterotrinuclear complexes. All these coinage metal complexes have short metal-metalseparations, indicating the presence of d10-d10 interactions, and display excellent luminescentproperties. Partial or complete transmetallation of the homotrinuclear Cu or Ag complexes withPd(0) precursors led to hetero-trinuclear complexes with d10-d10 interactions. In addition to itsbridging behavior, this ligand also showed its chelating behavior in Pd or Cr(III) complexes. Thelatter displayed superior performance in ethylene oligomerization than the Cr(II) complexes andgave mostly oligomers.
2

"You get what you pay for" vs "You can alchemize": Investigating Discovery Research Experiences in Inorganic Chemistry/Chemistry Education via an Undergraduate Instructional Laboratory

Bodenstedt, Kurt Wallace 08 1900 (has links)
Synthesis of d10 complexes of monovalent coinage metals, copper(I) and gold(I), with dithiophosphinate/diphosphine ligands -- along with their targeted characterization and screening for inorganic or organic light emitting diodes (LEDs or OLEDs, respectively) -- represents the main scope of this dissertation's scientific contribution in inorganic and materials chemistry. Photophysical studies were undertaken to quantify the phosphorescence properties of the materials in the functional forms required for LEDs or OLEDs. Computational studies were done to gain insights into the assignment of the phosphorescent emission peaks observed. The gold(I) dinuclear complexes studied would be candidates of OLED/LED devices due to room temperature phosphorescence, visible absorption/excitation bands, and low single-digit lifetimes -- which would promote higher quantum yield at higher voltages in devices with concomitant lower roll-off efficiency. The copper(I) complexes were not suited to the OLED/LED applications but can be used for thermosensing materials. Crystallographic studies were carried to elucidate coefficients of thermal expansion of the crystal unit cell for additional usage in materials applications besides optoelectronic devices. This has uncovered yet another unplanned potential application for both copper(I) and gold(I) complexes herein, as both types have been found to surpass the literature's threshold for "colossal" thermal expansion coefficients. Two other investigations represent contribution to the field of chemistry education have also been accounted for in this dissertation. First, a 12-week advanced research discovery experiment for inorganic chemistry has been designed to help students develop application-based content expertise, as well as to introduce students to research experiences that are similar to those found in academia, industry, and government research laboratories. Students are expected to develop a novel research project through conducting a literature search to find suitable reaction protocols, incorporating synthetic techniques, collecting data, characterizing products and applications of those products, and presenting their results. This multi-week research discovery experiment is centered on applications of inorganic synthetic techniques to design, analyze, and screen d10 coinage metal complexes for possible LED/OLED-based applications that were presented in chapter 3 of the dissertation. The second chemistry education contribution pertains to designing a pilot research study to investigate undergraduate chemistry majors' perceptions of environmental sources/influences, self-efficacy, outcome expectations, career interests, and career choice goals in the lab designed in chapter 4 of the dissertation. Specifically, this research aims to gauge students' perceptions of their ability to perform synthetic and analytical methods for the creation of materials that were used in a novel research experiment in the context of an inorganic chemistry laboratory. This research study used a survey to collect data on students' motivation, self-efficacy, career interests, and career goals upon graduation, along with their perceived barriers within the course. This research study is guided by the following research question: How does an inorganic chemistry laboratory course, following a research discovery model, impact undergraduate students' (a) confidence with techniques and skills, (b) perception of ability to conduct research, and (c) interest in pursuing careers involving chemistry?

Page generated in 0.1046 seconds