1 |
Visualização de dados multidimensionais referenciados utilizando projeções multidimensionais e animação / Referenced multidimensional data visualization using multidimensional projections and animationNeves, Tácito Trindade de Araújo Tiburtino 22 August 2011 (has links)
Ferramentas e técnicas de visualização promovem uma análise de dados mais efetiva pelo fato de explorar a capacidade humana na percepção de padrões, principalmente em representações gráficas. Muitos fenômenos são associados a algum tipo de referência, temporal ou geográfica, que pode oferecer informação importante quando são submetidos a processos de análise. Este trabalho aborda representações visuais de dados geradas por técnicas de projeção multidimensional, e propõe uma estratégia para o tratamento diferenciado das referências temporais ou geográficas presentes em conjuntos de dados, no processo de gerar uma projeção multidimensional. Foi proposta e implementada uma variação da técnica Least Square Projection (LSP) que evidencia a informação das referências e permite ao usuário interagir com os mapas visuais gerados, bem como diversas funcionalidades que auxiliam no processo de análise exploratória. A nova abordagem é ilustrada por meio de estudos de caso envolvendo bases de dados temporais e com referências geográficas, em que foi possível observar o comportamento global dos elementos, bem como comportamentos de elementos ou grupos de elementos de interesse. Limitações da estratégia proposta também são discutidas / Visualization tools and techniques promote more effective data analysis by exploiting the human visual perception capabilities in detecting patterns in graphical representations. Many phenomena generate data that include temporal or geographical references, which are likely to provide important information in data analysis procedures. This work addresses data visualizations generated with multidimensional projections, proposing a strategy to handle temporal and geographical references present in multidimensional data sets, when generating multidimensional projections. The Least Squares Projection (LSP) technique was extended to explicitly handle the reference information and represent it in the visual maps, and a set of supporting analysis functions have been implemented. The proposed approach is illustrated through case studies on multidimensional data sets, in which it was possible to observe the global behavior of the elements, as well as individual behavior of elements or groups of elements of interest
|
2 |
Visualização de dados multidimensionais referenciados utilizando projeções multidimensionais e animação / Referenced multidimensional data visualization using multidimensional projections and animationTácito Trindade de Araújo Tiburtino Neves 22 August 2011 (has links)
Ferramentas e técnicas de visualização promovem uma análise de dados mais efetiva pelo fato de explorar a capacidade humana na percepção de padrões, principalmente em representações gráficas. Muitos fenômenos são associados a algum tipo de referência, temporal ou geográfica, que pode oferecer informação importante quando são submetidos a processos de análise. Este trabalho aborda representações visuais de dados geradas por técnicas de projeção multidimensional, e propõe uma estratégia para o tratamento diferenciado das referências temporais ou geográficas presentes em conjuntos de dados, no processo de gerar uma projeção multidimensional. Foi proposta e implementada uma variação da técnica Least Square Projection (LSP) que evidencia a informação das referências e permite ao usuário interagir com os mapas visuais gerados, bem como diversas funcionalidades que auxiliam no processo de análise exploratória. A nova abordagem é ilustrada por meio de estudos de caso envolvendo bases de dados temporais e com referências geográficas, em que foi possível observar o comportamento global dos elementos, bem como comportamentos de elementos ou grupos de elementos de interesse. Limitações da estratégia proposta também são discutidas / Visualization tools and techniques promote more effective data analysis by exploiting the human visual perception capabilities in detecting patterns in graphical representations. Many phenomena generate data that include temporal or geographical references, which are likely to provide important information in data analysis procedures. This work addresses data visualizations generated with multidimensional projections, proposing a strategy to handle temporal and geographical references present in multidimensional data sets, when generating multidimensional projections. The Least Squares Projection (LSP) technique was extended to explicitly handle the reference information and represent it in the visual maps, and a set of supporting analysis functions have been implemented. The proposed approach is illustrated through case studies on multidimensional data sets, in which it was possible to observe the global behavior of the elements, as well as individual behavior of elements or groups of elements of interest
|
3 |
Um algoritmo de vida artificial para agrupamento de dados variantes no tempoSantos, Diego Gadens dos 14 September 2012 (has links)
Made available in DSpace on 2016-03-15T19:37:44Z (GMT). No. of bitstreams: 1
Diego Gadens dos Santos.pdf: 2663525 bytes, checksum: 46be86494cd52896593a08e979b2a0ce (MD5)
Previous issue date: 2012-09-14 / Fundo Mackenzie de Pesquisa / Current technologies have made it possible to generate and store data in high volumes. To process and collect information in large databases is not always as easy as creating them. Therefore, this gap has stimulated the search for efficient techniques capable of extracting useful and non-trivial knowledge, which are intrinsic to these large data sets. The goal of this work is to propose a bioinspired algorithm, based on the Boids artificial life model, which will be used to group data in dynamic environments, i.e. in databases updated over time. The Bo-ids algorithm was originally created to illustrate the simulation of the coordinated movement observed in a flock of birds and other animals. Thus, to use this algorithm for data clustering, some modifications must be applied. These changes will be implemented in the classical rules of cohesion, separation and alignment of the Boids model in order to consider the distance (similarity/dissimilarity) among objects. Thus, it creates objects that stand and move around the space, representing the natural groups within the data, and it is expected that similar ob-jects tend to form dynamic clusters (groups) of Boids in the environment, while dissimilar objects tend to keep a larger distance between them. The results presented attest the robust-ness of the algorithm for clustering time-varying data under the light of different evaluation measures and in various databases from the literature. / A capacidade de geração e armazenamento de dados proporcionada pelas tecnologias atuais levou ao surgimento de bases de dados com uma grande variedade de tipos e tamanhos. Extra-ir conhecimentos não triviais e úteis a partir de grandes bases de dados, entretanto, é uma tare-fa muito mais difícil do que a criação das mesmas. Esta lacuna tem estimulado a busca por técnicas eficientes de extração de conhecimentos intrínsecos a estes grandes conjuntos de da-dos, capazes de permitir tomadas estratégicas de decisão. Dentre as muitas tarefas da extração de conhecimentos a partir de dados, tem-se o agrupamento, que consiste na segmentação da base em grupos cujos objetos são mais parecidos entre si do que a objetos pertencentes a ou-tros grupos. Apesar de a área ser bastante ativa, pouco tem sido feito no sentido de desenvol-ver e investigar algoritmos de agrupamento para dados variantes no tempo, por exemplo, tran-sações financeiras, dados climáticos, informações e mensagens postadas em redes sociais e muitos outros. Tendo em vista a relevância prática desse tipo de análise e o crescente interesse pelos algoritmos inspirados na biologia, este trabalho tem como objetivo propor um algoritmo bioinspirado, baseado no modelo de vida artificial de Boids, para realizar o agrupamento de dados variantes no tempo. O algoritmo de Boids foi inicialmente criado para demonstrar ape-nas a simulação da movimentação coordenada observada em uma revoada de pássaros. A fim de utilizar este algoritmo para a tarefa de agrupamento de dados, algumas modificações tive-ram de ser propostas nas regras clássicas de coesão, separação e alinhamento dos Boids. Desta forma, foram criados objetos que se posicionam e se movimentam no espaço, de maneira a representar os grupos naturais existentes nos dados. A característica dinâmica intrínseca dos Boids tornou o algoritmo proposto, denominado dcBoids (dynamic clustering Boids), um can-didato natural para a resolução de problemas de agrupamento de dados variantes no tempo. Os resultados obtidos atestaram a robustez do método em seu contexto de aplicação, sob a pers-pectiva de diferentes medidas de avaliação de desempenho e quando aplicado a várias bases de dados da literatura com dinâmicas inseridas artificialmente.
|
Page generated in 0.1686 seconds