• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

High Frequency Modeling and Experimental Analysis for Implementation of Impedance-based Structural Health Monitoring

Peairs, Daniel Marsden 23 June 2006 (has links)
A promising structural health monitoring (SHM) method for implementation on real world structures is impedance-based health monitoring. An in-service system is envisioned to include on board processing and perhaps wireless transfer of data. Ideally, a system could be produced as a slap-on or automatically installed addition to a structure. The research presented in this dissertation addresses issues that will help make such a system a reality. Although impedance-based SHM does not typically use an analytical model for basic damage identification, a model is necessary for more advanced features of SHM, such as damage prognosis, and to evaluate system parameters when installing on various structures. A model was developed based on circuit analysis of the previously proposed low-cost circuit for impedance-based SHM in combination with spectral elements. When a three-layer spectral element representing a piezoceramic bonded to a base beam is used, the model can predict the large peaks in the impedance response due to resonances of the bonded active sensor. Parallel and series connections of distributed sensor systems are investigated both experimentally and with the developed model. Additionally, the distribution of baseline damage metrics is determined to assess how the large quantities of data produced by a monitoring system can be handled statistically. A modification of the RMSD damage metric has also been proposed that is essentially the squared sum of the Z-statistic for each frequency point. Preferred excitation frequencies for macro-fiber composite (MFC) active sensors are statistically determined for a long composite boom under development for use in rigidizable inflatable space structures. / Ph. D.

Page generated in 0.0575 seconds