• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1399
  • 504
  • 176
  • 126
  • 107
  • 86
  • 72
  • 68
  • 63
  • 59
  • 41
  • 35
  • 34
  • 21
  • 21
  • Tagged with
  • 3118
  • 3118
  • 557
  • 509
  • 450
  • 439
  • 395
  • 381
  • 344
  • 337
  • 320
  • 320
  • 260
  • 250
  • 226
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Data mining and classical statistics

Luo, Man January 2004 (has links)
This study introduces an overview of data mining. It suggests that methods derived from classical statistics are an integrated part of data mining. However, there are substantial differences between these two areas. Classical statistical models and non-statistical models used in data mining, such as regression trees and artificial neural networks, are presented to emphasize their unique approaches to extract information from data. In summation, this research provides some background to data mining and the role of classical statistics played in it. / Department of Mathematical Sciences
102

Mining frequent itemsets from uncertain data: extensions to constrained mining and stream mining

Hao, Boyu 19 July 2010 (has links)
Most studies on frequent itemset mining focus on mining precise data. However, there are situations in which the data are uncertain. This leads to the mining of uncertain data. There are also situations in which users are only interested in frequent itemsets that satisfy user-specified aggregate constraints. This leads to constrained mining of uncertain data. Moreover, floods of uncertain data can be produced in many other situations. This leads to stream mining of uncertain data. In this M.Sc. thesis, we propose algorithms to deal with all these situations. We first design a tree-based mining algorithm to find all frequent itemsets from databases of uncertain data. We then extend it to mine databases of uncertain data for only those frequent itemsets that satisfy user-specified aggregate constraints and to mine streams of uncertain data for all frequent itemsets. Experimental results show the effectiveness of all these algorithms.
103

Frequent pattern mining of uncertain data streams

Jiang, Fan January 2011 (has links)
When dealing with uncertain data, users may not be certain about the presence of an item in the database. For example, due to inherent instrumental imprecision or errors, data collected by sensors are usually uncertain. In various real-life applications, uncertain databases are not necessarily static, new data may come continuously and at a rapid rate. These uncertain data can come in batches, which forms a data stream. To discover useful knowledge in the form of frequent patterns from streams of uncertain data, algorithms have been developed to use the sliding window model for processing and mining data streams. However, for some applications, the landmark window model and the time-fading model are more appropriate. In this M.Sc. thesis, I propose tree-based algorithms that use the landmark window model or the time-fading model to mine frequent patterns from streams of uncertain data. Experimental results show the effectiveness of our algorithms.
104

Mining frequent patterns from uncertain data with MapReduce

Hayduk, Yaroslav 04 April 2012 (has links)
Frequent pattern mining from uncertain data allows data analysts to mine frequent patterns from probabilistic databases, within which each item is associated with an existential probability representing the likelihood of the presence of the item in the transaction. When compared with precise data, the solution space for mining uncertain data is often much larger due to the probabilistic nature of uncertain databases. Thus, uncertain data mining algorithms usually take substantially more time to execute. Recent studies show that the MapReduce programming model yields significant performance gains for data mining algorithms, which can be mapped to the map and reduce execution phases of MapReduce. An attractive feature of MapReduce is fault-tolerance, which permits detecting and restarting failed jobs on working machines. In this M.Sc. thesis, I explore the feasibility of applying MapReduce to frequent pattern mining of uncertain data. Specifically, I propose two algorithms for mining frequent patterns from uncertain data with MapReduce.
105

Data mining system in E-health system

zhu, chenguang January 2014 (has links)
No description available.
106

Accommodating temporal semantics in data mining and knowledge discovery /

Rainsford, Chris P. January 1999 (has links)
Thesis (PhD) -- University of South Australia, 1999
107

On semiparametric regression and data mining

Ormerod, John T, Mathematics & Statistics, Faculty of Science, UNSW January 2008 (has links)
Semiparametric regression is playing an increasingly large role in the analysis of datasets exhibiting various complications (Ruppert, Wand & Carroll, 2003). In particular semiparametric regression a plays prominent role in the area of data mining where such complications are numerous (Hastie, Tibshirani & Friedman, 2001). In this thesis we develop fast, interpretable methods addressing many of the difficulties associated with data mining applications including: model selection, missing value analysis, outliers and heteroscedastic noise. We focus on function estimation using penalised splines via mixed model methodology (Wahba 1990; Speed 1991; Ruppert et al. 2003). In dealing with the difficulties associated with data mining applications many of the models we consider deviate from typical normality assumptions. These models lead to likelihoods involving analytically intractable integrals. Thus, in keeping with the aim of speed, we seek analytic approximations to such integrals which are typically faster than numeric alternatives. These analytic approximations not only include popular penalised quasi-likelihood (PQL) approximations (Breslow & Clayton, 1993) but variational approximations. Originating in physics, variational approximations are a relatively new class of approximations (to statistics) which are simple, fast, flexible and effective. They have recently been applied to statistical problems in machine learning where they are rapidly gaining popularity (Jordan, Ghahramani, Jaakkola & Sau11999; Corduneanu & Bishop, 2001; Ueda & Ghahramani, 2002; Bishop & Winn, 2003; Winn & Bishop 2005). We develop variational approximations to: generalized linear mixed models (GLMMs); Bayesian GLMMs; simple missing values models; and for outlier and heteroscedastic noise models, which are, to the best of our knowledge, new. These methods are quite effective and extremely fast, with fitting taking minutes if not seconds on a typical 2008 computer. We also make a contribution to variational methods themselves. Variational approximations often underestimate the variance of posterior densities in Bayesian models (Humphreys & Titterington, 2000; Consonni & Marin, 2004; Wang & Titterington, 2005). We develop grid-based variational posterior approximations. These approximations combine a sequence of variational posterior approximations, can be extremely accurate and are reasonably fast.
108

On semiparametric regression and data mining

Ormerod, John T, Mathematics & Statistics, Faculty of Science, UNSW January 2008 (has links)
Semiparametric regression is playing an increasingly large role in the analysis of datasets exhibiting various complications (Ruppert, Wand & Carroll, 2003). In particular semiparametric regression a plays prominent role in the area of data mining where such complications are numerous (Hastie, Tibshirani & Friedman, 2001). In this thesis we develop fast, interpretable methods addressing many of the difficulties associated with data mining applications including: model selection, missing value analysis, outliers and heteroscedastic noise. We focus on function estimation using penalised splines via mixed model methodology (Wahba 1990; Speed 1991; Ruppert et al. 2003). In dealing with the difficulties associated with data mining applications many of the models we consider deviate from typical normality assumptions. These models lead to likelihoods involving analytically intractable integrals. Thus, in keeping with the aim of speed, we seek analytic approximations to such integrals which are typically faster than numeric alternatives. These analytic approximations not only include popular penalised quasi-likelihood (PQL) approximations (Breslow & Clayton, 1993) but variational approximations. Originating in physics, variational approximations are a relatively new class of approximations (to statistics) which are simple, fast, flexible and effective. They have recently been applied to statistical problems in machine learning where they are rapidly gaining popularity (Jordan, Ghahramani, Jaakkola & Sau11999; Corduneanu & Bishop, 2001; Ueda & Ghahramani, 2002; Bishop & Winn, 2003; Winn & Bishop 2005). We develop variational approximations to: generalized linear mixed models (GLMMs); Bayesian GLMMs; simple missing values models; and for outlier and heteroscedastic noise models, which are, to the best of our knowledge, new. These methods are quite effective and extremely fast, with fitting taking minutes if not seconds on a typical 2008 computer. We also make a contribution to variational methods themselves. Variational approximations often underestimate the variance of posterior densities in Bayesian models (Humphreys & Titterington, 2000; Consonni & Marin, 2004; Wang & Titterington, 2005). We develop grid-based variational posterior approximations. These approximations combine a sequence of variational posterior approximations, can be extremely accurate and are reasonably fast.
109

On semiparametric regression and data mining

Ormerod, John T, Mathematics & Statistics, Faculty of Science, UNSW January 2008 (has links)
Semiparametric regression is playing an increasingly large role in the analysis of datasets exhibiting various complications (Ruppert, Wand & Carroll, 2003). In particular semiparametric regression a plays prominent role in the area of data mining where such complications are numerous (Hastie, Tibshirani & Friedman, 2001). In this thesis we develop fast, interpretable methods addressing many of the difficulties associated with data mining applications including: model selection, missing value analysis, outliers and heteroscedastic noise. We focus on function estimation using penalised splines via mixed model methodology (Wahba 1990; Speed 1991; Ruppert et al. 2003). In dealing with the difficulties associated with data mining applications many of the models we consider deviate from typical normality assumptions. These models lead to likelihoods involving analytically intractable integrals. Thus, in keeping with the aim of speed, we seek analytic approximations to such integrals which are typically faster than numeric alternatives. These analytic approximations not only include popular penalised quasi-likelihood (PQL) approximations (Breslow & Clayton, 1993) but variational approximations. Originating in physics, variational approximations are a relatively new class of approximations (to statistics) which are simple, fast, flexible and effective. They have recently been applied to statistical problems in machine learning where they are rapidly gaining popularity (Jordan, Ghahramani, Jaakkola & Sau11999; Corduneanu & Bishop, 2001; Ueda & Ghahramani, 2002; Bishop & Winn, 2003; Winn & Bishop 2005). We develop variational approximations to: generalized linear mixed models (GLMMs); Bayesian GLMMs; simple missing values models; and for outlier and heteroscedastic noise models, which are, to the best of our knowledge, new. These methods are quite effective and extremely fast, with fitting taking minutes if not seconds on a typical 2008 computer. We also make a contribution to variational methods themselves. Variational approximations often underestimate the variance of posterior densities in Bayesian models (Humphreys & Titterington, 2000; Consonni & Marin, 2004; Wang & Titterington, 2005). We develop grid-based variational posterior approximations. These approximations combine a sequence of variational posterior approximations, can be extremely accurate and are reasonably fast.
110

Perturbation based privacy preserving data mining techniques for real-world data /

Liu, Li. January 2008 (has links)
Thesis (Ph. D.)--University of Texas at Dallas, 2008. / Includes vita. Includes bibliographical references (leaves 90-95)

Page generated in 0.0923 seconds