• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamic Data Race Detection for Structured Parallelism

Raman, Raghavan 24 July 2013 (has links)
With the advent of multicore processors and an increased emphasis on parallel computing, parallel programming has become a fundamental requirement for achieving available performance. Parallel programming is inherently hard because, to reason about the correctness of a parallel program, programmers have to consider large numbers of interleavings of statements in different threads in the program. Though structured parallelism imposes some restrictions on the programmer, it is an attractive approach because it provides useful guarantees such as deadlock-freedom. However, data races remain a challenging source of bugs in parallel programs. Data races may occur only in few of the possible schedules of a parallel program, thereby making them extremely hard to detect, reproduce, and correct. In the past, dynamic data race detection algorithms have suffered from at least one of the following limitations: some algorithms have a worst-case linear space and time overhead, some algorithms are dependent on a specific scheduling technique, some algorithms generate false positives and false negatives, some have no empirical evaluation as yet, and some require sequential execution of the parallel program. In this thesis, we introduce dynamic data race detection algorithms for structured parallel programs that overcome past limitations. We present a race detection algorithm called ESP-bags that requires the input program to be executed sequentially and another algorithm called SPD3 that can execute the program in parallel. While the ESP-bags algorithm addresses all the above mentioned limitations except sequential execution, the SPD3 algorithm addresses the issue of sequential execution by scaling well across highly parallel shared memory multiprocessors. Our algorithms incur constant space overhead per memory location and time overhead that is independent of the number of processors on which the programs execute. Our race detection algorithms support a rich set of parallel constructs (including async, finish, isolated, and future) that are found in languages such as HJ, X10, and Cilk. Our algorithms for async, finish, and future are precise and sound for a given input. In the presence of isolated, our algorithms are precise but not sound. Our experiments show that our algorithms (for async, finish, and isolated) perform well in practice, incurring an average slowdown of under 3x over the original execution time on a suite of 15 benchmarks. SPD3 is the first practical dynamic race detection algorithm for async-finish parallel programs that can execute the input program in parallel and use constant space per memory location. This takes us closer to our goal of building dynamic data race detectors that can be "always-on" when developing parallel applications.
2

Fault Location and Avoidance in Long-Running Multithreaded Applications

Tallam, Sriraman Madapusi January 2007 (has links)
Faults are common-place and inevitable in complex applications. Hence, automated techniques are necessary to analyze failed executions and debug the application to locate the fault. For locating faults in programs, dynamic slices have been shown to be very effective in reducing the effort of debugging. The user needs to inspect only a small subset of program statements to get to the root cause of the fault. While prior work has primarily focussed on single-threaded programs, this dissertation shows how dynamic slicing can be used for fault location in multithreaded programs. This dissertation also shows that dynamic slices can be used to track down faults due to data races in multithreaded programs by incorporating additional data dependences that arise in the presence of many threads. In order to construct the dynamic slices, dependence traces are collected and processed. However, program runs generate traces in the order of Gigabytes in a few seconds. Hence, for multithreaded program runs that are long-running, the process of collecting and storing these traces poses a significant challenge. This dissertation proposes two techniques to overcome this challenge. Experiments indicate that the techniques combined can reduce the size of the traces by 3 orders of magnitude. For applications that are critical and for which down time is highly detrimental, techniques for surviving software failures and letting the execution continue are desired. This dissertation proposes one such technique to recover applications from a class of faults that are caused by the execution environment and prevent the fault in future runs. This technique has been successfully used to avoid faults in a variety of applications caused due to thread scheduling, heap overflow, and malformed user requests. Case studies indicate that, for most environment bugs, the point in the execution where the environment modification is necessary can be clearly pin-pointed by using the proposed system and the fault can be avoided in the first attempt. The case studies also show that the patches needed to prevent the different faults are simple and the overhead induced by the system during the normal run of the application is less than 10 \%, on average.
3

Finding Data Races in Software Binaries with Symbolic Execution

Jackson, Nathan D. 27 May 2020 (has links)
No description available.
4

Practical Support for Strong, Serializability-Based Memory Consistency

Biswas, Swarnendu 30 December 2016 (has links)
No description available.
5

Efficient Static Analyses for Concurrent Programs

Mukherjee, Suvam January 2017 (has links) (PDF)
Concurrent programs are pervasive owing to the increasing adoption of multi-core systems across the entire computing spectrum. However, the large set of possible program behaviors make it difficult to write correct and efficient con-current programs. This also makes the formal and automated analysis of such programs a hard problem. Thus, concurrent programs provide fertile grounds for a large class of insidious defects. Static analysis techniques infer semantic properties of programs without executing them. They are attractive because they are sound (they can guarantee the absence of bugs), can execute with a fair degree of automation, and do not depend on test cases. However, current static analyses techniques for concurrent programs are either precise and prohibitively slow, or fast but imprecise. In this thesis, we partially address this problem by designing efficient static analyses for concurrent programs. In the first part of the thesis, we provide a framework for designing and proving the correctness of data flow analysis for race free multi-threaded programs. The resulting analyses are in the same spirit as the \sync-CFG" analysis, originally proposed in De et al, 2011. Using novel thread-local semantics as starting points, we devise abstract analyses which treat a concurrent program as if it were sequential. We instantiate these abstractions to devise efficient relational analyses for race free programs, which we have implemented in a prototype tool called RATCOP. On the benchmarks, RATCOP was fairly precise and fast. In a comparative study with a recent concurrent static analyzer, RATCOP was up to 5 orders of magnitude faster. In the second part of the thesis, we propose a technique for detecting all high-level data races in a system library, like the kernel API of a real-time operating system (RTOS) that relies on ag-based scheduling and synchronization. Such races are good indicators of atomicity violations. Using our technique, a user is able to soundly disregard 99:8% of an estimated 41; 000 potential high-level races. Our tool detected 38 high-level data races in FreeRTOS (a popular OS in the embedded systems domain), out of which 16 were harmful.
6

Efficient Compiler and Runtime Support for Serializability and Strong Semantics on Commodity Hardware

Sengupta, Aritra 07 September 2017 (has links)
No description available.
7

Towards a safe and secure synchronous language

Attar, Pejman 12 December 2013 (has links) (PDF)
Cette thèse propose une nouvelle approche du parallélisme et de la concurrence, posant les bases d'un langage de programmation à la fois sûr et "secure" (garantissant la sécurité des données), fondé sur une sémantique formelle claire et simple, tout en étant adapté aux architectures multi-cores. Nous avons adopté le paradigme synchrone, dans sa variante réactive, qui fournit une alternative simple à la programmation concurrente standard en limitant l'impact des erreurs dépendant du temps ("data-races"). Dans un premier temps, nous avons considéré un langage réactif d'orchestration, DSL, dans lequel on fait abstraction de la mémoire (Partie 1). Dans le but de pouvoir traiter la mémoire et la sécurité, nous avons ensuite étudié (Partie 2) un noyau réactif, CRL, qui utilise un opérateur de parallélisme déterministe. Nous avons prouvé la réactivité bornée des programmes de CRL. Nous avons ensuite équipé CRL de mécanismes pour contrôler le flux d'information (Partie 3). Pour cela, nous avons d'abord étendu CRL avec des niveaux de sécurité pour les variables et les évènement, puis nous avons défini dans le langage étendu, SSL, un système de types permettant d'éviter les fuites d'information. Parallèlement (Partie 4), nous avons ajouté la mémoire à CRL, en proposant le modèle DSLM. En utilisant une notion d'agent, nous avons structuré la mémoire de telle sorte qu'il ne puisse y avoir de "data-races". Nous avons également étudié l'implémentation de DSLM sur les architectures multi-cores, fondée sur la notion de site et de migration d'un agent entre les sites. L'unification de SSL et de DSLM est une piste pour un travail futur.
8

Dynamická detekce a léčení časově závislých chyb nad daty v prostředí Java / Dynamic Data Race Detection and Self-Healing in Java Programs

Letko, Zdeněk January 2008 (has links)
Finding concurrency bugs in complex software is difficult. As a contribution to coping with this problem the thesis proposes an architecture for a fully automated dynamic detection and healing of data races and atomicity violations in Java. Two distinct algorithms for detecting of data races are presented. One of them is a novel algorithm called AtomRace which detects data races as a special case of atomicity violations. The healing is based on suppressing a recurrence of the detected problem and can be performed by introducing an additional synchronization or by legally influencing the Java scheduler. Basically forces certain parts of the code  to be executed atomically. The proposed architecture uses bytecode instrumentation to be able to track and influence the execution. The architecture and algorithms were implemented and tested on multiple case studies.

Page generated in 0.0734 seconds