1 |
TRACKING RECEIVER NOISE BANDWIDTH SELECTIONPedroza, Moises 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The selection of the Intermediate Frequency (IF) bandwidth filter for a data receiver for
processing PCM data is based on using a peak deviation of 0.35 times the bit rate. The
optimum IF bandwidth filter is equal to the bit rate. An IF bandwidth filter of 1.5 times the
bit rate degrades the data by approximately 0.7 dB. The selection of the IF bandwidth
filter for tracking receivers is based on the narrowest “noise bandwidth” that will yield the
best system sensitivity. In some cases the noise bandwidth of the tracking receiver is the
same as the IF bandwidth of the data receiver because it is the same receiver. If this is the
case, the PCM bit rate determines the IF bandwidth and establishes the system sensitivity.
With increasing bit rates and increased transmitter stability characteristics, the IF
bandwidth filter selection criteria for a tracking receiver must include system sensitivity
considerations. The tracking receiver IF bandwidth filter selection criteria should also be
based on the narrowest IF bandwidth that will not cause the tracking errors to be masked
by high bit rates and alter the pedestal dynamic response.
This paper describes a selection criteria for a tracking receiver IF bandwidth filter based
on measurements of the tracking error signals versus antenna pedestal dynamic response.
Different IF bandwidth filters for low and high bit rates were used.
|
2 |
SOME PRACTICAL CONSIDERATIONS IN THE USE OF PSEUDO-RANDOM SEQUENCES FOR TESTING THE EOS AM-1 RECEIVERO’Donnell, John 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1998 / Town & Country Resort Hotel and Convention Center, San Diego, California / There are well-known advantages in using pseudo-random sequences for testing of data communication links. The sequences, also called pseudo-noise (PN) sequences, approximate random data very well, especially for sequences thousands of bits long. They are easy to generate and are widely used for bit error rate testing because it is easy to synchronize a slave pattern generator to a received PN stream for bit-by-bit comparison. There are other aspects of PN sequences, however, that are not as widely known or applied. This paper points out how some of the less familiar characteristics of PN sequences can be put to practical use in the design of a Digital Test Set and other specialbuilt test equipment used for checkout of the EOS AM-1 Space Data Receiver. The paper also shows how knowledge of these PN sequence characteristics can simplify troubleshooting the digital sections in the Space Data Receiver. Finally, the paper addresses the sufficiency of PN data testing in characterizing the performance of a receiver/data recovery system.
|
Page generated in 0.0455 seconds