• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data Prefetching via Off-line Learning

Wong, Weng Fai 01 1900 (has links)
The widely acknowledged performance gap between processors and memory has been the subject of much research. In the Explicitly Parallel Instruction Computing (EPIC) paradigm, the combination of in-order issue and the presence of a large number of parallel function units has further worsen the problem. Prefetching, by hardware, software or a combination of both, has been one of the primary mechanisms to alleviate this problem. In this talk, we will discuss two prefetching mechanisms, one hardware and other software, suitable for implementation in EPIC processors. Both methods rely on the off-line learning of Markovian predictors. In the hardware mechanism, the predictors are loaded into a table that is used by a prefetch engine. We have shown that the method is particularly effective for prefetching into the L2 cache. Our software mechanism which we called predicated prefetch leverages on informing loads. This is used in conjunction with data remapping and offline learning of Markovian predictors. This distinguishes our approach from early software prefetching techniques that only involves static program analysis. Our experiments show that this framework, together with the algorithms used in it, can effectively remove, in the best instance, 30% of the stall cycles due to cache misses. The results also show that the framework performs better than pure hardware stride predictors and has lower bandwidth and instruction overheads than that of pure software approaches. / Singapore-MIT Alliance (SMA)
2

Design Space Exploration and Optimization of Embedded Memory Systems

Rabbah, Rodric Michel 11 July 2006 (has links)
Recent years have witnessed the emergence of microprocessors that are embedded within a plethora of devices used in everyday life. Embedded architectures are customized through a meticulous and time consuming design process to satisfy stringent constraints with respect to performance, area, power, and cost. In embedded systems, the cost of the memory hierarchy limits its ability to play as central a role. This is due to stringent constraints that fundamentally limit the physical size and complexity of the memory system. Ultimately, application developers and system engineers are charged with the heavy burden of reducing the memory requirements of an application. This thesis offers the intriguing possibility that compilers can play a significant role in the automatic design space exploration and optimization of embedded memory systems. This insight is founded upon a new analytical model and novel compiler optimizations that are specifically designed to increase the synergy between the processor and the memory system. The analytical models serve to characterize intrinsic program properties, quantify the impact of compiler optimizations on the memory systems, and provide deep insight into the trade-offs that affect memory system design.

Page generated in 0.075 seconds