• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Potlačení DoS útoků s využitím strojového učení / Mitigation of DoS Attacks Using Machine Learning

Goldschmidt, Patrik January 2021 (has links)
Útoky typu odoprenia služby (DDoS) sú v dnešných počítačových sieťach stále frekventovanejším bezpečnostným incidentom. Táto práca sa zameriava na detekciu týchto útokov a poskytnutie relevantných informácii za účelom ich mitigácie v reálnom čase. Spomínaná funkcionalita je dosiahnutá s využitím techník prúdového dolovania z dát a strojového učenia. Výsledkom práce je sada nástrojov zastrešujúca celý proces strojového učenia - od vlastnej extrakcie príznakov cez predspracovanie dát až po export natrénovaného modelu pripraveného na nasadenie v produkcii. Experimentálne výsledky vyhodnotené na viacerých reálnych a syntetických dátových sadách poukazujú na presnosť systému väčšiu ako 99% s možnosťou spoľahlivej detekcie prebiehajúceho útoku do 4 sekúnd od jeho začiatku.
12

Efficient Frequent Closed Itemset Algorithms With Applications To Stream Mining And Classification

Ranganath, B N 09 1900 (has links)
Data mining is an area to find valid, novel, potentially useful, and ultimately understandable abstractions in a data. Frequent itemset mining is one of the important data mining approaches to find those abstractions in the form of patterns. Frequent Closed itemsets provide complete and condensed information for non-redundant association rules generation. For many applications mining all the frequent itemsets is not necessary, and mining frequent Closed itemsets are adequate. Compared to frequent itemset mining, frequent Closed itemset mining generates less number of itemsets, and therefore improves the efficiency and effectiveness of these tasks. Recently, much research has been done on Closed itemsets mining, but it is mainly for traditional databases where multiple scans are needed, and whenever new transactions arrive, additional scans must be performed on the updated transaction database; therefore, they are not suitable for data stream mining. Mining frequent itemsets from data streams has many potential and broad applications. Some of the emerging applications of data streams that require association rule mining are network traffic monitoring and web click streams analysis. Different from data in traditional static databases, data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. Recent works on data stream mining based on sliding window method slide the window by one transaction at a time. But when the window size is large and support threshold is low, the existing methods consume significant time and lead to a large increase in user response time. In our first work, we propose a novel algorithm Stream-Close based on sliding window model to mine frequent Closed itemsets from the data streams within the current sliding window. We enhance the scalabality of the algorithm by introducing several optimization techniques such as sliding the window by multiple transactions at a time and novel pruning techniques which lead to a considerable reduction in the number of candidate itemsets to be examined for closure checking. Our experimental studies show that the proposed algorithm scales well with large data sets. Still the notion of frequent closed itemsets generates a huge number of closed itemsets in some applications. This drawback makes frequent closed itemsets mining infeasible in many applications since users cannot interpret the large volume of output (which sometimes will be greater than the data itself when support threshold is low) and may lead to an overhead to develop extra applications which post processes the output of original algorithm to reduce the size of the output. Recent work on clustering of itemsets considers strictly either expression(consists of items present in itemset) or support of the itemsets or partially both to reduce the number of itemsets. But the drawback of the above approaches is that in some situations, number of itemsets does not reduce due to their restricted view of either considering expressions or support. So we propose a new notion of frequent itemsets called clustered itemsets which considers both expressions and support of the itemsets in summarizing the output. We introduce a new distance measure w.r.t expressions and also prove the problem of mining clustered itemsets to be NP-hard. In our second work, we propose a deterministic locality sensitive hashing based classifier using clustered itemsets. Locality sensitive hashing(LSH)is a technique for efficiently finding a nearest neighbour in high dimensional data sets. The idea of locality sensitive hashing is to hash the points using several hash functions to ensure that for each function the probability of collision is much higher for objects that are close to each other than those that are far apart. We propose a LSH based approximate nearest neighbour classification strategy. But the problem with LSH is, it randomly chooses hash functions and the estimation of a large number of hash functions could lead to an increase in query time. From Classification point of view, since LSH chooses randomly from a family of hash functions the buckets may contain points belonging to other classes which may affect classification accuracy. So, in order to overcome these problems we propose to use class association rules based hash functions which ensure that buckets corresponding to the class association rules contain points from the same class. But associative classification involves generation and examination of large number of candidate class association rules. So, we use the clustered itemsets which reduce the number of class association rules to be examined. We also establish formal connection between clustering parameter(delta used in the generation of clustered frequent itemsets) and discriminative measure such as Information gain. Our experimental studies show that the proposed method achieves an increase in accuracy over LSH based near neighbour classification strategy.
13

Obtenção de padrões sequenciais em data streams atendendo requisitos do Big Data

Carvalho, Danilo Codeco 06 June 2016 (has links)
Submitted by Daniele Amaral (daniee_ni@hotmail.com) on 2016-10-20T18:13:56Z No. of bitstreams: 1 DissDCC.pdf: 2421455 bytes, checksum: 5fd16625959b31340d5f845754f109ce (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:42:36Z (GMT) No. of bitstreams: 1 DissDCC.pdf: 2421455 bytes, checksum: 5fd16625959b31340d5f845754f109ce (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-11-08T18:42:42Z (GMT) No. of bitstreams: 1 DissDCC.pdf: 2421455 bytes, checksum: 5fd16625959b31340d5f845754f109ce (MD5) / Made available in DSpace on 2016-11-08T18:42:49Z (GMT). No. of bitstreams: 1 DissDCC.pdf: 2421455 bytes, checksum: 5fd16625959b31340d5f845754f109ce (MD5) Previous issue date: 2016-06-06 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / The growing amount of data produced daily, by both businesses and individuals in the web, increased the demand for analysis and extraction of knowledge of this data. While the last two decades the solution was to store and perform data mining algorithms, currently it has become unviable even to supercomputers. In addition, the requirements of the Big Data age go far beyond the large amount of data to analyze. Response time requirements and complexity of the data acquire more weight in many areas in the real world. New models have been researched and developed, often proposing distributed computing or different ways to handle the data stream mining. Current researches shows that an alternative in the data stream mining is to join a real-time event handling mechanism with a classic mining association rules or sequential patterns algorithms. In this work is shown a data stream mining approach to meet the Big Data response time requirement, linking the event handling mechanism in real time Esper and Incremental Miner of Stretchy Time Sequences (IncMSTS) algorithm. The results show that is possible to take a static data mining algorithm for data stream environment and keep tendency in the patterns, although not possible to continuously read all data coming into the data stream. / O crescimento da quantidade de dados produzidos diariamente, tanto por empresas como por indivíduos na web, aumentou a exigência para a análise e extração de conhecimento sobre esses dados. Enquanto nas duas últimas décadas a solução era armazenar e executar algoritmos de mineração de dados, atualmente isso se tornou inviável mesmo em super computadores. Além disso, os requisitos da chamada era do Big Data vão muito além da grande quantidade de dados a se analisar. Requisitos de tempo de resposta e complexidade dos dados adquirem maior peso em muitos domínios no mundo real. Novos modelos têm sido pesquisados e desenvolvidos, muitas vezes propondo computação distribuída ou diferentes formas de se tratar a mineração de fluxo de dados. Pesquisas atuais mostram que uma alternativa na mineração de fluxo de dados é unir um mecanismo de tratamento de eventos em tempo real com algoritmos clássicos de mineração de regras de associação ou padrões sequenciais. Neste trabalho é mostrada uma abordagem de mineração de fluxo de dados (data stream) para atender ao requisito de tempo de resposta do Big Data, que une o mecanismo de manipulação de eventos em tempo real Esper e o algoritmo Incremental Miner of Stretchy Time Sequences (IncMSTS). Os resultados mostram ser possível levar um algoritmo de mineração de dados estático para o ambiente de fluxo de dados e manter as tendências de padrões encontrados, mesmo não sendo possível ler todos os dados vindos continuamente no fluxo de dados.
14

DS-Fake : a data stream mining approach for fake news detection

Mputu Boleilanga, Henri-Cedric 08 1900 (has links)
L’avènement d’internet suivi des réseaux sociaux a permis un accès facile et une diffusion rapide de l’information par toute personne disposant d’une connexion internet. L’une des conséquences néfastes de cela est la propagation de fausses informations appelées «fake news». Les fake news représentent aujourd’hui un enjeu majeur au regard de ces conséquences. De nombreuses personnes affirment encore aujourd’hui que sans la diffusion massive de fake news sur Hillary Clinton lors de la campagne présidentielle de 2016, Donald Trump n’aurait peut-être pas été le vainqueur de cette élection. Le sujet de ce mémoire concerne donc la détection automatique des fake news. De nos jours, il existe un grand nombre de travaux à ce sujet. La majorité des approches présentées se basent soit sur l’exploitation du contenu du texte d’entrée, soit sur le contexte social du texte ou encore sur un mélange entre ces deux types d’approches. Néanmoins, il existe très peu d’outils ou de systèmes efficaces qui détecte une fausse information dans la vie réelle, tout en incluant l’évolution de l’information au cours du temps. De plus, il y a un manque criant de systèmes conçues dans le but d’aider les utilisateurs des réseaux sociaux à adopter un comportement qui leur permettrait de détecter les fausses nouvelles. Afin d’atténuer ce problème, nous proposons un système appelé DS-Fake. À notre connaissance, ce système est le premier à inclure l’exploration de flux de données. Un flux de données est une séquence infinie et dénombrable d’éléments et est utilisée pour représenter des données rendues disponibles au fil du temps. DS-Fake explore à la fois l’entrée et le contenu d’un flux de données. L’entrée est une publication sur Twitter donnée au système afin qu’il puisse déterminer si le tweet est digne de confiance. Le flux de données est extrait à l’aide de techniques d’extraction du contenu de sites Web. Le contenu reçu par ce flux est lié à l’entrée en termes de sujets ou d’entités nommées mentionnées dans le texte d’entrée. DS-Fake aide également les utilisateurs à développer de bons réflexes face à toute information qui se propage sur les réseaux sociaux. DS-Fake attribue un score de crédibilité aux utilisateurs des réseaux sociaux. Ce score décrit la probabilité qu’un utilisateur puisse publier de fausses informations. La plupart des systèmes utilisent des caractéristiques comme le nombre de followers, la localisation, l’emploi, etc. Seuls quelques systèmes utilisent l’historique des publications précédentes d’un utilisateur afin d’attribuer un score. Pour déterminer ce score, la majorité des systèmes utilisent la moyenne. DS-Fake renvoie un pourcentage de confiance qui détermine la probabilité que l’entrée soit fiable. Contrairement au petit nombre de systèmes qui utilisent l’historique des publications en ne prenant pas en compte que les tweets précédents d’un utilisateur, DS-Fake calcule le score de crédibilité sur la base des tweets précédents de tous les utilisateurs. Nous avons renommé le score de crédibilité par score de légitimité. Ce dernier est basé sur la technique de la moyenne Bayésienne. Cette façon de calculer le score permet d’atténuer l’impact des résultats des publications précédentes en fonction du nombre de publications dans l’historique. Un utilisateur donné ayant un plus grand nombre de tweets dans son historique qu’un autre utilisateur, même si les tweets des deux sont tous vrais, le premier utilisateur est plus crédible que le second. Son score de légitimité sera donc plus élevé. À notre connaissance, ce travail est le premier qui utilise la moyenne Bayésienne basée sur l’historique de tweets de toutes les sources pour attribuer un score à chaque source. De plus, les modules de DS-Fake ont la capacité d’encapsuler le résultat de deux tâches, à savoir la similarité de texte et l’inférence en langage naturel hl(en anglais Natural Language Inference). Ce type de modèle qui combine ces deux tâches de TAL est également nouveau pour la problématique de la détection des fake news. DS-Fake surpasse en termes de performance toutes les approches de l’état de l’art qui ont utilisé FakeNewsNet et qui se sont basées sur diverses métriques. Il y a très peu d’ensembles de données complets avec une variété d’attributs, ce qui constitue un des défis de la recherche sur les fausses nouvelles. Shu et al. ont introduit en 2018 l’ensemble de données FakeNewsNet pour résoudre ce problème. Le score de légitimité et les tweets récupérés ajoutent des attributs à l’ensemble de données FakeNewsNet. / The advent of the internet, followed by online social networks, has allowed easy access and rapid propagation of information by anyone with an internet connection. One of the harmful consequences of this is the spread of false information, which is well-known by the term "fake news". Fake news represent a major challenge due to their consequences. Some people still affirm that without the massive spread of fake news about Hillary Clinton during the 2016 presidential campaign, Donald Trump would not have been the winner of the 2016 United States presidential election. The subject of this thesis concerns the automatic detection of fake news. Nowadays, there is a lot of research on this subject. The vast majority of the approaches presented in these works are based either on the exploitation of the input text content or the social context of the text or even on a mixture of these two types of approaches. Nevertheless, there are only a few practical tools or systems that detect false information in real life, and that includes the evolution of information over time. Moreover, no system yet offers an explanation to help social network users adopt a behaviour that will allow them to detect fake news. In order to mitigate this problem, we propose a system called DS-Fake. To the best of our knowledge, this system is the first to include data stream mining. A data stream is a sequence of elements used to represent data elements over time. This system explores both the input and the contents of a data stream. The input is a post on Twitter given to the system that determines if the tweet can be trusted. The data stream is extracted using web scraping techniques. The content received by this flow is related to the input in terms of topics or named entities mentioned in the input text. This system also helps users develop good reflexes when faced with any information that spreads on social networks. DS-Fake assigns a credibility score to users of social networks. This score describes how likely a user can publish false information. Most of the systems use features like the number of followers, the localization, the job title, etc. Only a few systems use the history of a user’s previous publications to assign a score. To determine this score, most systems use the average. DS-Fake returns a percentage of confidence that determines how likely the input is reliable. Unlike the small number of systems that use the publication history by taking into account only the previous tweets of a user, DS-Fake calculates the credibility score based on the previous tweets of all users. We renamed the credibility score legitimacy score. The latter is based on the Bayesian averaging technique. This way of calculating the score allows attenuating the impact of the results from previous posts according to the number of posts in the history. A user who has more tweets in his history than another user, even if the tweets of both are all true, the first user is more credible than the second. His legitimacy score will therefore be higher. To our knowledge, this work is the first that uses the Bayesian average based on the post history of all sources to assign a score to each source. DS-Fake modules have the ability to encapsulate the output of two tasks, namely text similarity and natural language inference. This type of model that combines these two NLP tasks is also new for the problem of fake news detection. There are very few complete datasets with a variety of attributes, which is one of the challenges of fake news research. Shu et al. introduce in 2018 the FakeNewsNet dataset to tackle this issue. Our work uses and enriches this dataset. The legitimacy score and the retrieved tweets from named entities mentioned in the input texts add features to the FakeNewsNet dataset. DS-Fake outperforms all state-of-the-art approaches that have used FakeNewsNet and that are based on various metrics.

Page generated in 0.1304 seconds