Spelling suggestions: "subject:"datautvinning"" "subject:"datautbildning""
1 |
ARAVQ som datareducerare för en klassificeringsuppgift inom datautvinningAhlén, Niclas January 2004 (has links)
<p>Adaptive Resource Allocating Vector Quantizer (ARAVQ) är en teknik för datareducering för mobila robotar. Tekniken har visats framgångsrik i enkla miljöer och det har spekulerats i att den kan fungera som ett generellt datautvinningsverktyg för tidsserier. I rapporten presenteras experiment där ARAVQ används som datareducerare på en artificiell respektive en fysiologisk datamängd inom en datautvinningskontext. Dessa datamängder skiljer sig från tidigare robotikmiljöer i och med att de beskriver objekt med diffusa eller överlappande gränser i indatarymden. Varje datamängd klassificeras efter datareduceringen med hjälp av artificiella neuronnät. Resultatet från experimenten tyder på att klassificering med ARAVQ som datareducerare uppnår ett betydligt lägre resultat än om ARAVQ inte används som datareducerare. Detta antas delvis bero på den låga generaliserbarheten hos de lösningar som skapas av ARAVQ. I diskussionen föreslås att ARAVQ skall kompletteras med en funktion för grannskap, motsvarande den som finns i Self-Organizing Map. Med ett grannskap behålls relationerna mellan de kluster som ARAVQ skapar, vilket antas minska följderna av att en beskrivning hamnar i ett grannkluster</p>
|
2 |
ARAVQ som datareducerare för en klassificeringsuppgift inom datautvinningAhlén, Niclas January 2004 (has links)
Adaptive Resource Allocating Vector Quantizer (ARAVQ) är en teknik för datareducering för mobila robotar. Tekniken har visats framgångsrik i enkla miljöer och det har spekulerats i att den kan fungera som ett generellt datautvinningsverktyg för tidsserier. I rapporten presenteras experiment där ARAVQ används som datareducerare på en artificiell respektive en fysiologisk datamängd inom en datautvinningskontext. Dessa datamängder skiljer sig från tidigare robotikmiljöer i och med att de beskriver objekt med diffusa eller överlappande gränser i indatarymden. Varje datamängd klassificeras efter datareduceringen med hjälp av artificiella neuronnät. Resultatet från experimenten tyder på att klassificering med ARAVQ som datareducerare uppnår ett betydligt lägre resultat än om ARAVQ inte används som datareducerare. Detta antas delvis bero på den låga generaliserbarheten hos de lösningar som skapas av ARAVQ. I diskussionen föreslås att ARAVQ skall kompletteras med en funktion för grannskap, motsvarande den som finns i Self-Organizing Map. Med ett grannskap behålls relationerna mellan de kluster som ARAVQ skapar, vilket antas minska följderna av att en beskrivning hamnar i ett grannkluster
|
Page generated in 0.0368 seconds