• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Compactness of the dbar-Neumann problem and Stein neighborhood bases

Sahutoglu, Sonmez 16 August 2006 (has links)
This dissertation consists of two parts. In the first part we show that for 1 k 1, a complex manifold M of dimension at least k in the boundary of a smooth bounded pseudoconvex domain in Cn is an obstruction to compactness of the @- Neumann operator on (p, q)-forms for 0 p k n, provided that at some point of M, the Levi form of b has the maximal possible rank n − 1 − dim(M) (i.e. the boundary is strictly pseudoconvex in the directions transverse to M). In particular, an analytic disc is an obstruction to compactness of the @-Neumann operator on (p, 1)-forms, provided that at some point of the disc, the Levi form has only one vanishing eigenvalue (i.e. the eigenvalue zero has multiplicity one). We also show that a boundary point where the Levi form has only one vanishing eigenvalue can be picked up by the plurisubharmonic hull of a set only via an analytic disc in the boundary. In the second part we obtain a weaker and quantified version of McNeal’s Property ( eP) which still implies the existence of a Stein neighborhood basis. Then we give some applications on domains in C2 with a defining function that is plurisubharmonic on the boundary.
2

Spectral projection for the dbar-Neumann problem

Alsaedy, Ammar, Tarkhanov, Nikolai January 2012 (has links)
We show that the spectral kernel function of the dbar-Neumann problem on a non-compact strongly pseudoconvex manifold is smooth up to the boundary.

Page generated in 0.0548 seconds