• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Shapes of tree representations of spin-glass landscapes

Hordijk, Wim, Fontanari, José F., Stadler, Peter F. 04 February 2019 (has links)
Much of the information about the multi-valley structure of disordered spin systems can be convened in a simple tree structure - a barrier tree - the leaves and internal nodes of which represent, respectively, the local minima and the lowest energy saddles connecting those minima. Here we apply several statistics used in the study of phylogenetic trees to barrier trees that result from the energy landscapes of p-spin models. These statistics give information about the shape of these barrier trees, in particular about balance and symmetry. We then ask if they can be used to classify different types of landscapes, compare them with results obtained from random trees, and investigate the structure of subtrees of the barrier trees. We conclude that at least one of the used statistics is capable of distinguishing different types of landscapes, that the barrier trees from p-spin energy landscapes are quite different from random trees, and that subtrees of barrier trees do not reflect the overall tree structure, but their structure is correlated with their ´depth' in the tree.
2

Phase transition and landscape statistics of the number partitioning problem

Stadler, Peter F., Hordijk, Wim, Fontanari, Jose F. 17 October 2018 (has links)
The phase transition in the number partitioning problem (NPP), i.e., the transition from a region in the space of control parameters in which almost all instances have many solutions to a region in which almost all instances have no solution, is investigated by examining the energy landscape of this classic optimization problem. This is achieved by coding the information about the minimum energy paths connecting pairs of minima into a tree structure, termed a barrier tree, the leaves and internal nodes of which represent, respectively, the minima and the lowest energy saddles connecting those minima. Here we apply several measures of shape (balance and symmetry) as well as of branch lengths (barrier heights) to the barrier trees that result from the landscape of the NPP, aiming at identifying traces of the easy-hard transition. We find that it is not possible to tell the easy regime from the hard one by visual inspection of the trees or by measuring the barrier heights. Only the difficulty measure, given by the maximum value of the ratio between the barrier height and the energy surplus of local minima, succeeded in detecting traces of the phase transition in the tree. In addition, we show that the barrier trees associated with the NPP are very similar to random trees, contrasting dramatically with trees associated with the p spin-glass and random energy models. We also examine critically a recent conjecture on the equivalence between the NPP and a truncated random energy model.

Page generated in 0.012 seconds