• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 77
  • 46
  • 36
  • Tagged with
  • 158
  • 158
  • 79
  • 79
  • 79
  • 46
  • 26
  • 17
  • 17
  • 15
  • 14
  • 14
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of novel rhodopsins with light-regulated cGMP production or cGMP degradation / Charakterisierung neuartiger Rhodopsine mit Licht-regulierter cGMP-Produktion oder cGMP-Degradation

Tian, Yuehui January 2019 (has links) (PDF)
Photoreceptors are widely occurring in almost all kingdoms of life. They mediate the first step in sensing electromagnetic radiation of different wavelength. Absorption spectra are found within the strongest radiation from the sun and absorption usually triggers downstream signaling pathways. Until now, mainly 6 classes of representative photoreceptors are known: five water-soluble proteins, of these three classes of blue light-sensitive proteins including LOV (light-oxygen-voltage), BLUF (blue-light using FAD), and cryptochrome modules with flavin (vitamin B-related) nucleotides as chromophore; while two classes of yellow and red light-sensitive proteins consist of xanthopsin and phytochrome, respectively. Lastly, as uniquely integral membrane proteins, the class of rhodopsins can usually sense over a wide absorption spectrum, ranging from ultra-violet to green and even red light. Rhodopsins can be further divided into two types, i.e., microbial (type I) and animal (type II) rhodopsins. Rhodopsins consist of the protein opsin and the covalently bound chromophore retinal (vitamin A aldehyde). In this thesis, I focus on identification and characterization of novel type I opsins with guanylyl cyclase activity from green algae and a phosphodiesterase opsin from the protist Salpingoeca rosetta. Until 2014, all known type I and II rhodopsins showed a typical structure with seven transmembrane helices (7TM), an extracellular N-terminus and a cytosolic C-terminus. The proven function of the experimentally characterized type I rhodopsins was membrane transport of ions or the coupling to a transducer which enables phototaxis via a signaling chain. A completely new class of type I rhodopsins with enzymatic activity was identified in 2014. A light-activated guanylyl cyclase opsin was discovered in the fungus Blastocladiella emersonii which was named Cyclop (Cyclase opsin) by Gao et al. (2015), after heterologous expression and rigorous in-vitro characterization. BeCyclop is the first opsin for which an 8 transmembrane helices (8TM) structure was demonstrated by Gao et al. (2015). Earlier (2004), a novel class of enzymatic rhodopsins was predicted to exist in C. reinhardtii by expressed sequence tag (EST) and genome data, however, no functional data were provided up to now. The hypothetical rhodopsin included an N-terminal opsin domain, a fused two-component system with histidinekinase and response regulator domain, and a C-terminal guanylyl cyclase (GC) domain. This suggested that there could be a biochemical signaling cascade, integrating light-induction and ATP-dependent phosphate transfer, and as output the light-sensitive cGMP production. One of my projects focused on characterizing two such opsins from the green algae Chlamydomonas reinhardtii and Volvox carteri which we then named 2c-Cyclop (two-component Cyclase opsin), Cr2c-Cyclop and Vc2c-Cyclop, respectively. My results show that both 2c-Cyclops are light-inhibited GCs. Interestingly, Cr2c-Cyclop and Vc2c-Cyclop are very sensitive to light and ATP-dependent, whereby the action spectra of Cr2c-Cyclop and Vc2c-Cyclop peak at ~540 nm and ~560 nm, respectively. More importantly, guanylyl cyclase activity is dependent on continuous phosphate transfer between histidine kinase and response regulator. However, green light can dramatically block phosphoryl group transfer and inhibit cyclase activity. Accordingly, mutation of the retinal-binding lysine in the opsin domain resulted in GC activity and lacking light-inhibition. A novel rhodopsin phosphodiesterase from the protist Salpingoeca rosetta (SrRhoPDE) was discovered in 2017. However, the previous two studies of 2017 claimed a very weak or absent light-regulation. Here I give strong evidence for light-regulation by studying the activity of SrRhoPDE, expressed in Xenopus laevis oocytes, in-vitro at different cGMP concentrations. Surprisingly, hydrolysis of cGMP shows a ~100-fold higher turnover than that of cAMP. Light can enhance substrate affinity by decreasing the Km value for cGMP from 80 μM to 13 μM, but increases the maximum turnover only by ~30%. In addition, two key single mutants, SrRhoPDE K296A or K296M, can abolish the light-activation effect by interrupting a covalent bond of Schiff base type to the chromophore retinal. I also demonstrate that SrRhoPDE shows cytosolic N- and C- termini, most likely via an 8-TM structure. In the future, SrRhoPDE can be a potentially useful optogenetic tool for light-regulation of cGMP concentration, possibly after further improvements by genetic engineering. / Photorezeptoren sind in fast allen Lebewesen vorzufinden. Sie vermitteln den ersten Schritt bei der Detektion von elektromagnetischer Strahlung unterschiedlicher Wellenlänge. Ihre Absorptionsspektren finden sich innerhalb des Bereichs der stärksten Sonnenstrahlung (UV bis nahes IR) und die Absorption löst normalerweise nachgelagerte Signalwege aus. Bis jetzt sind hauptsächlich 6 Klassen von Photorezeptoren bekannt: als wasserlösliche Proteine zunächst drei Klassen von Blaulicht-empfindlichen Modulen, die LOV-Domäne (Light/Oxygen/Voltage), die BLUF-Domäne (Blue Light sensing, Using FAD) und Cryptochrom mit Flavinen (Vitamin B-Komplex) als Chromophor, sowie Xanthopsine, die hauptsächlich für gelbes Licht und Phytochrome, die für Rotlicht empfindlich sind. Als integrale Membranproteine kann die Klasse der Rhodopsine jedoch ein breiteres Absorptionsspektrum aufweisen, je nach Rhodopsin empfindlich für UV/blaues, grünes oder sogar rotes Licht. Rhodopsine bestehen aus dem Protein Opsin und dem kovalent gebundenen Chromophor Retinal (Vitamin A-Aldehyd). Sie können weiter in zwei Typen unterteilt werden, mikrobielle (Typ I) und tierische (Typ II) Rhodopsine. In dieser Dissertation konzentriere ich mich auf die Identifizierung und Charakterisierung von neuen Typ I Opsinen mit Guanylylcyclase-Aktivität aus Grünalgen und einem Phosphodiesterase-Opsin aus dem Protisten Salpingoeca rosetta. Bis 2014 wiesen alle bekannten Rhodopsine eine typische Struktur mit sieben Transmembranhelices (7TM), einem extrazellulären N-Terminus und einem zytosolischen C- Terminus auf. Die nachgewiesene Funktion der experimentell charakterisierten Rhodopsine vom Typ I ist der Membrantransport von Ionen oder die Kopplung an einen Transducer, der die Phototaxis über eine Signalkette ermöglicht. Eine völlig neue Klasse von Typ-I Rhodopsinen mit enzymatischer Aktivität wurde 2014 gefunden. Ein lichtaktiviertes Guanylyl-Cyclase- Opsin wurde im Pilz Blastocladiella emersonii (Be) entdeckt, das von Gao et al. (2015) nach heterologer Expression und gründlicher in-vitro-Charakterisierung Cyclop (Cyclase opsin) genannt wurde. BeCyclop ist das erste Opsin, für das eine Struktur mit 8 Transmembranhelices (8TM) demonstriert wurde (Gao et al., 2015). Bereits früher (2004) wurde durch expressed sequence tag (EST) und Genom-Daten vorhergesagt, dass eine neue Klasse von enzymatischen Rhodopsinen in Chlamydomonas reinhardtii existiert, jedoch gelang bisher keine funktionelle Expression. Eines dieser hypothetischen Rhodopsine umfasste eine N-terminale Opsin- Domäne, ein fusioniertes Zweikomponentensystem mit Histidinkinase- und Regulator-Domäne und eine C-terminale Guanylylcyclase (GC). Dies legte nahe, dass das Protein eine biochemische Signalkaskade inkorporieren könnte, die Licht-Absorption und ATP-abhängigen Phosphattransfer integriert und eine lichtempfindliche cGMP-Produktion bewirkt. Eines meiner Projekte konzentrierte sich auf die Charakterisierung von zwei solchen Opsinen aus den Grünalgen C. reinhardtii und Volvox carteri, die wir nun 2c-Cyclop (Zweikomponenten-Cyclase-Opsin), d.h. Cr2c-Cyclop und Vc2c-Cyclop, nennen. Meine Ergebnisse zeigen, dass beide 2c-Cyclops durch Licht gehemmte GCs sind. Interessanterweise sind Cr2c-Cyclop und Vc2c-Cyclop sehr empfindlich gegenüber Licht und die cGMP- Produktion ist ATP-abhängig, wobei die Wirkungsspektren von Cr2c-Cyclop und Vc2c-Cyclop bei ~540 nm bzw. ~560 nm ihren Höhepunkt erreichen. Ich konnte zeigen, dass die Guanylyl- Cyclase-Aktivität von einem kontinuierlichen Phosphat-Transfer zwischen Histidinkinase und Response-Regulator abhängt. Grünes Licht kann jedoch den Phosphoryl-Gruppen-Transfer dramatisch blockieren und die Cyclase-Aktivität inhibieren. Dementsprechend führte die Mutation des Retinal-bindenden Lysins in der Opsindomäne zu einer cGMP Produktion ohne jegliche Lichtinhibierung. Eine neuartige Rhodopsin-Phosphodiesterase aus dem Protisten Salpingoeca rosetta (SrRhoPDE) wurde im Jahr 2017 entdeckt. Die vorangegangenen zwei Studien von 2017 zeigten jedoch eine sehr schwache oder fehlende Lichtregulation der PDE-Aktivität. Hier konnte ich eine starke Lichtregulation beweisen, indem ich die Aktivität von SrRhoPDE, exprimiert in Xenopus laevis Oozyten, in-vitro bei verschiedenen cGMP-Konzentrationen untersuchte. Überraschenderweise zeigt die Hydrolyse von cGMP einen etwa 100-fach höheren Umsatz als der von cAMP. Licht kann die Substrataffinität durch Verringern des Km-Werts für cGMP von 80 µM auf 13 µM erhöhen, erhöht jedoch den maximalen Umsatz nur um ~30%. Darüber hinaus können zwei Einzelmutanten, SrRhoPDE K296A oder K296M, den Lichtaktivierungseffekt aufheben, indem sie eine kovalente Bindung vom Schiff-Base-Typ an das Chromophor Retinal unterbrechen. Ich zeige auch, dass SrRhoPDE zytosolische N- und C-Termini aufweist, höchstwahrscheinlich über eine 8-TM-Struktur. In Zukunft könnte SrRhoPDE ein potentiell nützliches optogenetisches Werkzeug für die Lichtregulation der cGMP-Konzentration sein, möglicherweise nach weiteren Verbesserungen durch Gentechnik.
2

A Comparative Study on Guard Cell Function of the Glycophyte \(Arabidopsis\) \(thaliana\) and the Halophyte \(Thellungiella\) \(salsuginea\) Under Saline Growth Conditions / Eine vergleichende Studie zur Schließzellfunktion des Glycophyten \(Arabidopsis\) \(thaliana\) und des Halophyten \(Thellungiella\) \(salsuginea\) unter salinen Wachstumsbedingungen

Karimi, Sohail Mehmood January 2021 (has links) (PDF)
The greatest problems faced during the 21st century is climate change which is a big threat to food security due to increasing number of people. The increase in extreme weather events, such as drought and heat, makes it difficult to cultivate conventional crops that are not stress tolerant. As a result, increasing irrigation of arable land leads to additional salinization of soils with plant-toxic sodium and chloride ions. Knowledge about the adaptation strategies of salt-tolerant plants to salt stress as well as detailed knowledge about the control of transpiration water loss of these plants are therefore important to guarantee productive agriculture in the future. In the present study, I have characterized salt sensitive and salt tolerant plant species at physiological, phenotypic and transcriptomic level under short (1x salt) and long-time (3x) saline growth conditions. Two approaches used for long-time saline growth conditions (i.e increasing saline conditions (3x salt) and constant high saline conditions (3x 200 mM salt) were successfully developed in the natural plant growth medium i.e soil. Salt sensitive plants, A. thaliana, were able to survive and successfully set seeds at the toxic concentrations on the increasing saline growth mediums, with minor changes in the phenotype. However, under constant high saline conditions they could not survive. This was due to keeping low potassium, and high salt ions (sodium and chloride) in the photosynthetic tissue i.e leaf. Similarly, high potassium and low salt ions in salt tolerant T. salsuginea on both saline environments were the key for survival of this plant species. Being salt tolerant, T. salsuginea always kept high potassium levels and low sodium (during 1x) and chloride levels (during both 1x and 3x) in the leaf tissue. A strict control over transpirational water loss via stomata (formed by pair of guard cells) is important to maintain plant water balance. Aperture size of the stomata is regulated by the turgidity of the guard cells. More turgid the guard cells, bigger the apertures are and hence more transpiration. Under osmotic stress, the water loss is reduced which was evident in the salt sensitive A. thaliana plants under both short and long-time saline growth conditions. As the osmotic stress was only increased during long time saline growth conditions in T. salsuginea therefore, water loss was also decreased only under these saline conditions. Environmental CO2 assimilation also takes place via stomata in plants which then is used for photosynthesis. Stomatal apertures also influence CO2 assimilation. As the light absorbing photosynthetic pigments were more affected in A. thaliana, therefore photosynthetic activity of the whole plant was also reduced. Similarly, both short and long-time saline growth conditions also reduced the effective quantum yield of A. thaliana guard cells. Growth of the plant is dependent on energy which comes from photosynthesis. Reduced environmental CO2 assimilation would affect photosynthesis and hence growth, which was clearly observed in A. thaliana guard cells under long-time saline growth conditions. Major differences in both guard cells types were observed in their chloride and potassium levels. Energy Dispersive X-Ray Analysis (EDXA) suggested strict control of chloride accumulation in T. salsuginea guard cells as the levels remain unchanged under all conditions. Similarly, use of sodium in place of potassium for osmotic adjustments seems to be dependent on Na+/K+ rations in both guard cell types. Increased salt ions and reduced potassium levels in A. thaliana guard cells posed negative effect on photochemistry which in turn increased ROS metabolism and reduced energy related pathways at transcriptomic level in this plant species. Moreover, photosynthesis was strongly affected in A. thaliana guard cells both at transcriptomic and physiological levels. Similarly, global phytohormones induced changes were more evident in A. thaliana guard cells especially on 3x salt medium. Among all phytohormones, genes under the control of auxin were more differentially expressed in A. thaliana guard cells which suggests wide changes in growth and development in this plant species under salinity. Phytohormone, ABA is vital for closing the stomata under abiotic stress conditions. Increased levels of ABA during saline conditions led to efflux of potassium and counter anions (chloride, malate, nitrate) from the guard cells which caused the outward flow of water and hence reduction in turgor pressure. Reduced turgor pressure led to reduced water loss and CO2 assimilation especially in A. thaliana. Guard cells of both plant species synthesized ABA during saline conditions which was reflected from transcriptomic data and ABA quantification in the guard cells. ABA induced signaling in both plant species varied at the ABA receptor (PYL/PYR) levels where totally contrasting responses were observed. PYL2, PYL8 and PYL9 were specific to A. thaliana, furthermore, PYL2 was found to be differentially expressed only under 3x salt growth conditions thus suggesting its role during long term salt stress in this plant species. Protein phosphatases, which negatively regulate ABA signaling on one hand and act as ABA sensor on the other hand were found to be more differentially expressed in A. thaliana than T. salsuginea guard cells, which suggests their diverse role in both plant species under saline conditions. Differential expression of more ABA signaling players in long time saline conditions was prominent which could be because of darkness, as it is well known that rapid closure of stomata under dark conditions require ABA signaling. Moreover, representation of these components in dark also suggests that plants become more sensitive to dark under saline conditions which is also evident from the transpiration rates. Altogether, increased salt ions in A. thaliana guard cells and leaves led to pigment degradation and ABA induced reduction in transpiration which in turn influenced its growth. In contrast, T. salsuginea is the salt excluder and therefore keeps low levels of salt ions especially the chloride both in leaves and guard cells which mildly affects its growth. Guard cells of A. thaliana encounter severe energy problems at physiological and transcriptomic level. Main differences in the ABA signalling between both plant species were observed at the ABA receptor level. / Das größte Problem des 21. Jahrhunderts ist der Klimawandel, der aufgrund der wachsenden Zahl von Menschen eine große Bedrohung für die Ernährungssicherheit darstellt. Die Zunahme extremer Wetterereignisse wie Dürre und Hitze erschwert den Anbau konventioneller, nicht stressresistenter Pflanzen. Eine zunehmende Bewässerung von Ackerland führt daher zu einer zusätzlichen Versalzung der Böden mit pflanzentoxischen Natrium- und Chloridionen. Kenntnisse über die Anpassungsstrategien salztoleranter Pflanzen an Salzstress sowie detaillierte Kenntnisse über die Kontrolle des Wasserverlusts durch Transpiration dieser Pflanzen sind daher wichtig, um eine produktive Landwirtschaft auch in Zukunft zu gewährleisten. In der vorliegenden Studie habe ich salzempfindliche und salztolerante Pflanzenarten auf physiologischer, phänotypischer und transkriptioneller Ebene unter kurzen (1x Salz) und langen (3x) Salzwachstumsbedingungen charakterisiert. In dem natürlichen Pflanzenwachstumsmedium, dh. dem Boden, wurden zwei Ansätze erfolgreich entwickelt, die für lang anhaltende Salzwachstumsbedingungen (dh zunehmende Salzbedingungen (3x Salz) und konstant hohe Salzbedingungen (3x 200 mM Salz) verwendet wurden. Die Pflanzen waren in der Lage, Samen bei den toxischen Konzentrationen auf den ansteigenden Salzwachstumsmedien zu überleben und erfolgreich zu setzen, wobei geringfügige Änderungen des Phänotyps auftraten. Unter konstant hohen Salzbedingungen konnten sie jedoch nicht überleben. Dies lag daran, dass wenig Kalium und hohe Salzionen vorhanden waren (Natrium und Chlorid) im photosynthetischen Gewebe, dh im Blatt. Ebenso stellten hohe Kalium- und niedrige Salzionen in salztoleranten T. salsuginea in beiden salzhaltigen Umgebungen den Schlüssel zum Überleben dieser Pflanzenart dar. Da T. salsuginea salztolerant war, blieb der Kaliumspiegel stets hoch und der Natrium- (während 1x) und Chloridspiegel (während 1x und 3x) im Blattgewebe niedrig. Eine strikte Kontrolle des transpirationelen Wasserverlusts über Stomata (gebildet von zwei Schließzellen) ist wichtig, um den Wasserhaushalt der Pflanzen aufrechtzuerhalten. Die Öffnungsgröße der Stomata wird durch den Turgor der Schutzzellen reguliert. Je praller die Schließzellen, desto größer die Öffnungen und damit die Transpiration. Unter osmotischem Stress wird der Wasserverlust verringert, was bei den salzempfindlichen A. thaliana-Pflanzen sowohl unter kurz- als auch langfristigen Salzwachstumsbedingungen offensichtlich war. Da der osmotische Stress in T. salsuginea nur über einen langen Zeitraum unter Salzwachstumsbedingungen anstieg, verringerte sich auch der Wasserverlust nur unter diesen Salzbedingungen. Die Aufnahme von CO2 in die Umwelt erfolgt auch über die Stomata und wird dann für die Photosynthese verwendet. Stomata beeinflussen daher auch die CO2-Assimilation. Da die lichtabsorbierenden photosynthetischen Pigmente in A. thaliana stärker betroffen waren, war auch die photosynthetische Aktivität der gesamten Pflanze verringert. In ähnlicher Weise verringerten sowohl kurz- als auch langzeitige Salzwachstumsbedingungen auch die effektive Quantenausbeute von A. thaliana-Schließzellen. Das Wachstum der Pflanze hängt von der Energie ab, die aus der Photosynthese stammt. Eine verringerte CO2-Assimilation aus der Umwelt würde die Photosynthese und damit das Wachstum beeinträchtigen, was bei A. thaliana-Schließzellenn unter lang andauerenden Salzwachstumsbedingungen deutlich zu beobachten war. Wesentliche Unterschiede bei beiden Schließzelltypen wurden in ihren Chlorid- und Kaliumspiegeln beobachtet. Die energiedispersive Röntgenanalyse (EDXA) ergab eine strikte Kontrolle der Chloridakkumulation in T. salsuginea Schließzellen, da die Chloridkonzentrationen unter allen Bedingungen unverändert bleiben. In ähnlicher Weise scheint die Verwendung von Natrium anstelle von Kalium für osmotische Anpassungen von Na + / K + -Verhältnissen in beiden Schließzelltypen abhängig zu sein. Erhöhte Salzionen und verringerte Kaliumspiegel in A. thaliana-Schließzellen wirkten sich negativ auf die Photochemie aus, was wiederum den ROS-Metabolismus erhöhte und die energiebezogenen Wege auf transkriptomischem Niveau bei dieser Pflanzenart verringerte. Darüber hinaus war die Photosynthese in A. thaliana-Schließzellen sowohl auf transkriptioneller als auch auf physiologischer Ebene stark beeinträchtigt. In ähnlicher Weise waren globale Phytohormon-induzierte Veränderungen in A. thaliana-Schließzellen, insbesondere auf 3 × Salzmedium, deutlicher. Unter allen Phytohormonen wurden Gene unter der Kontrolle von Auxin in A. thaliana-Schließzellen differenzierter exprimiert, was auf weitreichende Veränderungen im Wachstum und in der Entwicklung dieser Pflanzenart unter Salzgehalt hindeutet. Das Phytohormon ABA ist für das Schließen der Stomata unter abiotischen Stressbedingungen von entscheidender Bedeutung. Erhöhte ABA-Spiegel unter Salzbedingungen führten zum Austritt von Kalium und Gegenanionen (Chlorid, Malat, Nitrat) aus den Schließzellen, was den Wasserfluss nach außen und damit eine Verringerung des Turgordrucks bewirkte. Reduzierter Turgordruck führte insbesondere bei A. thaliana zu einem geringeren Wasserverlust und einer geringeren CO2-Aufnahme. Die Schließzellen beider Pflanzenarten synthetisierten ABA unter Salzbedingungen, was sich aus den Transkriptomdaten und der ABA-Quantifizierung in den Schließzellen widerspiegelte. Die ABA-induzierte Signalübertragung in beiden Pflanzenarten variierte bei den ABA-Rezeptor- (PYL / PYR-) Spiegeln, bei denen völlig unterschiedliche Reaktionen beobachtet wurden. PYL2, PYL8 und PYL9 waren spezifisch für A. thaliana. Darüber hinaus wurde festgestellt, dass PYL2 nur unter dreifachen Salzwachstumsbedingungen unterschiedlich exprimiert wird, was auf seine Rolle bei langfristigem Salzstress bei dieser Pflanzenart hindeutet. Es wurde gefunden, dass Proteinphosphatasen, die einerseits die ABA-Signalübertragung negativ regulieren und andererseits als ABA-Sensor wirken, in A. thaliana differenzierter exprimiert werden als in T. salsuginea-Schließzellen, was auf ihre vielfältige Rolle in beiden Pflanzenarten unter Salzbedingungen hindeutet. Eine differenzierte Expression von mehr ABA-Signalgebern unter Bedingungen mit langer Salzwasserbewässerung war auffällig, was auf Dunkelheit zurückzuführen sein könnte, da bekanntlich ein schnelles Schließen der Stomata unter dunklen Bedingungen eine ABA-Signalgebung erfordert. Darüber hinaus deutet die Darstellung dieser Komponenten im Dunkeln auch darauf hin, dass Pflanzen unter salzhaltigen Bedingungen empfindlicher gegenüber Dunkelheit werden, was auch aus den Transpirationsraten hervorgeht. Insgesamt führten erhöhte Salzionen in A. thaliana-Schließzzellen und Blättern zu einem Pigmentabbau und einer durch ABA verursachten Reduktion der Transpiration, was deren Wachstum beeinflusste. Im Gegensatz dazu ist T. salsuginea in der Lage Salz auszuschließen und hält daher geringe Mengen an Salzionen, insbesondere das Chlorid sowohl in Blättern als auch in Schließzellen, dass sein Wachstum geringfügig beeinflusst. Schließzellen von A. thaliana stoßen auf physiologischer und transkriptomischer Ebene auf schwerwiegende Energieprobleme. Hauptunterschiede in der ABA-Signalgebung zwischen beiden Pflanzenarten wurden auf der ABA-Rezeptorebene beobachtet.
3

Function and regulation of plant Mitogen-Activated Protein Kinases in metabolic and stress signaling pathways / Funktion und Regulation von pflanzlichen Mitogen-aktivierten Proteinkinasen in metabolischen und Stress Signalwegen

Hyun, Tae Kyung January 2009 (has links) (PDF)
In Pflanzenzellen ist die Aktivierung von Mitogen-aktivierten Protein (MAP) Kinasen eine allgemeine Reaktion zur abwehrvermittelten Signaltransduktion. Da die nachgeschalteten Prozesse der Aktivierung der MAP Kinasen in Pflanzen weitestgehend unbekannt sind,wurde die Rolle der MAP Kinasen in Abhängigkeit von stressvermittelnden Stimuli auf die Abwehrmechanismen und den primären Kohlenhydratmetabolismus in Tomate untersucht. Dabei wurde die Beziehung zwischen MAP Kinasen (LpMPK2 und LPMPK3) und der extrazellulären Invertase Lin6, welche ein Schlüsselenzym der apoplastischen Phloementladung darstellt, analysiert. Es konnte gezeigt werden, dass die mRNAs von LpMPK3 und Lin6 sequenziell durch dieselben stressvermittelnden Stimuli (E-Fol, PGA,Verwundung, KCl) induziert werden. Die Induktion des Lin6 Promotors, erkennbar durch eine erhöhte β-Glucuronidase Aktivität 2 Stunden nach Behandlung der Reporterlinien mit Stimuli, war abhängig von der Expression und Aktivierung der LpMPK3. Die vorliegenden Daten zeigen, dass die Induktion von der extrazellulären Invertase Lin6 durch stressvermittelnde Stimuli LpMPK3 bedarf. Die Behandlung mit Glukose zeigte eine gleichzeitige Induktion der AtMPK4 und AtMPK6 Aktivität, welche durch Anionen-Austausch-Chromatographie separiert und mit Hilfe von spezifischen MAP Kinase Antikörpern nachgewiesen werden konnten. Zusammengefasst lassen diese Daten vermuten, dass die Aktivierung der MAP Kinasen eine zentrale Rolle in der Zucker vermittelten Signalübertragung spielt. Die Bewegung der Stomata wird durch umweltbedingte Einflüsse wie ichtintensität, Luftfeuchtigkeit und CO2-Konzentration kontrolliert. In Arabidopsis wird die Entwicklung und Strukturierung durch eine komplette MAP Kinasen Signalkaskade reguliert. Hingegen ist in höheren Pflanzen wenig über die CO2 induzierte Signalübertragung bei der Bewegung der Stomata bekannt. Experimente zeigten, dass hohe CO2 Konzentrationen eine schnelle und kurzzeitige Aktivierung von SIPK und NtMPK4 bewirken. Die Aktivierung der beiden MAP Kinasen könnte bei hoher CO2 Konzentration die Aktivierung eines Anionenkanals zur Stomata Bewegunng regulieren. Während in einer Vielzahl von Studien die antioxidativen Eigenschaften von Tocopherolen im Hinblick auf die Regulierung der Stresstoleranz beschrieben ist, sind die nicht-antioxidativen Eigenschaften von Tocopherolen in höheren Pflanzen bis heute nur wenig aufgeklärt. Daher wurde in Tabak die Funktion von α-Tocopherol auf die Stimuli-induzierte und MAP Kinasevermittelte Signalübertragung analysiert. Es wurde gezeigt, dass die Aktivierung der MAP Kinase durch die Behandlung mit einem pilzlichen Elizitor und dem Derivat α-Tocopherol- Phosphat induziert wird. Bei der Behandlung mit α-Tocopherol trat dieser Effekt nicht auf. Interessanterweise wurde bei α-Tocopherol im Gegensatz zu Ascorbinsäure ein kurzzeitiger inhibitorischer Effekt auf die Aktivierung der Stimuli-induzierten MAP Kinasen in BY2 Zellen und Tabakpflanzen beobachtet. Der Inhibitor-Aktivitäts-Test ließ vermuten, dass die Applikation indirekt die Aktivität von MAP Kinasen beeinflussen könnte. Diese Ergebnisse deuten auf eine negative Regulierung von α-Tocopherol auf die Stimuli-induzierte Signalübertragung durch Inaktivierung der MAP kinasen hin. Purin-Analoga sind aufgrund ihrer strukturellen Selektivität als spezifische Proteinkinase- Inhibitoren in Mammalia beschrieben. In dieser Arbeit wurden C2, N6, N9 –trisubstituierte Purine getestet, um grundlegende Beziehungen zwischen chemischer Struktur und inhibitorischen Effekten auf pflanzliche MAP Kinasen zu untersuchen. Die Modifikation der Substitution in der Position C2 und N9 bedingte eine erhöhte inhibitorische Aktivität von 6- (Benzylamino)-Purin Analoga. Daneben lassen die 6-(iso-Pentenylamino)-Purin Analoga vermuten, dass die Addition einer Methylgruppe an der N9 Position verglichen mit der Addition einer Isopropyl-Gruppe eine um das zweifache erhöhte inhibitorische Aktivität bewirkt. Zusammengefasst zeigen die Studien, dass die Selektivität und Wirksamkeit der Inhibitioren durch die Modifikation der chemischen Struktur verbessert wird. Desweiteren wurde die physiologische Funktion von AtPDP1 (Arabidopsis thaliana PLAT domain protein 1) auf die Regulation der Abwehrsignalübertragung, hervorgerufen durch biotsche und abiotische Faktoren, charakterisiert. Interessanterweise bewirkte die Überexpression von AtPDP1 eine erhöhte Empfindlichkeit gegen virulente Pathogene und nekrotrophe Pilze. Zudem begünstigte es die Bildung von Nekrosen aufgrund von unbekannten biotischen Faktoren. Dagegen zeigten diese überexprimierenden Linien während erhöhtem Salzstress eine signifikante Verzögerung der Seneszenz und eine höhere Quantenausbeute des PS II im Vergleich zu den Kontrollpflanzen. Die Ergebnisse weisen sehr deutlich auf eine positive Regulation von AtPDP1 auf die Salztoleranz und erhöhte Empfindlichkeit gegenüber biotischem Stress hin. Daher wird angenommen, dass AtPDP1 durch komplexe Signalwege und Wechselwirkungen während der Stressadaptation reguliert wird. / Activation of mitogen-activated protein (MAP) kinases is a common reaction of plant cells in defense-related signal transduction pathways. Since the downstream events after the activation of MAP kinases are largely unknown in plants, the role of MAP kinases in the co-ordinate regulation of defense reactions and primary carbon metabolism by stress related stimuli has been analyzed in tomato. Thus, the relationship between mitogen activated protein kinases (LpMPK2 and LpMPK3) and extracellular invertases Lin6, as the key enzyme of an apoplasmic phloem unloading pathway, has been analyzed. The results showed that the mRNAs of LpMPK3 and Lin6 are sequentially induced by the same set of stress related stimuli (E-Fol, PGA,wounding, and KCl). The induction of the Lin6 promotor, as revealed by an increase in β-glucuronidase activity after 2 hours, was dependent both on the expression and activation of LpMPK3. These data suggest that the induction of extracellular invertase Lin6 by stress related stimuli requires LpMPK3. Glucose, metabolic molecule, was shown to result in the simultaneous induction of AtMPK4 and AtMPK6 activities that could be separated by anion-exchange chromatography, and characterized by differential cross-reaction with MAP kinase antibodies. Taken together, these data suggest that the activation of MAP inases play central roles in the regulation of sugar signaling. Stomatal movement is controlled by environmental signals including light intensity,humidity and atmospheric CO2 level. In Arabidopsis, a complete MAP kinase signaling cascade regulates stomatal development and patterning. However, the movement of stomata mediated by CO2 induced signaling pathways is not fully studied in higher plants. Here, we show that elevated levels of CO2 induce rapid and transient activation of SIPK and NtMPK4. The activation of both MAP kinases may regulate the anion channel activation for stomatal movement by the elevated level CO2. Up to now, the non-antioxidant function of tocopherol is not clear in higher plant,whereas the ability of tocopherol to modulate the stress tolerance mediated by function of antioxidant has been described in numerous studies. Thus, the function of α-tocopherol in stimuli-induced signal transduction pathways mediated by MAP kinase has been analyzed in tobacco. It has been shown that the activation of MAP kinase was induced by treatment of fungal elicitor and α-tocopherol phosphate but not α-tocopherol. Interestingly, α-tocopherol showed the transient inhibitory effect on the activation of stimuli-induced MAP Kinases in BY2 cells and tobacco plants, whereas ascorbate did not inhibit the activation of MAP kinases. The inhibitory activity test indicated that current application may indirectly affect the activity of MAP kinases. These results suggest that α-tocopherol can negatively regulate stimuliinduced signal transduction pathways via inactivation of MAP kinases. The purine-analogues have been tested and reported to be specific inhibitors of protein kinases mediated by structural-based selectivity in mammalian. Here, we tested C2, N6, N9-trisubstituted purines to determine basic relationship between their chemical structure and inhibitory activity using a particular plant MAP kinase. The modification of substitution in position C2 and N9 caused the increased inhibitory activity of 6-(benzylamino) purine analogue. In addition, 6-(isopentenylamino) purine analogues suggested that addition of a methyl group to position N9 caused at least 2-fold increased inhibitory activity compared with the addition of isopropyl group.Taken together, our study suggests that the selectivity and potency of inhibitors can be improved by structure modification. In addition, we have characterized the physiological function of Arabidopsis thaliana PLAT domain protein 1 (AtPDP1) in modulating the interaction of defense pathways mediated by biotic and abiotic factors. Interestingly, overexpression of AtPDP1 resulted in increasing susceptibility of virulent pathogens and necrotrophic fungus, and developing necrosis induced by unknown biotic factors. However, these overexperssion lines showed the significantly delayed senescence and higher level of phosystem II quantum yield compared with control plants against high salt stress. Our results strongly indicate that AtPDP1 positively regulate with salt tolerance, and enhances the sensitivity to biotic stresses. We propose that the AtPDP1 might be regulated with the complex pathways of interplay among various signaling during stress adaptation.
4

Extraflorale Nektarien der Pappeln Populus trichocarpa und Populus tremula x P. tremuloides : Unterschiede und Gemeinsamkeiten / Extrafloral nectaries of poplar "Populus trichocarpa" and "Populus tremula x P. tremuloides" : differences and similarities

Jaborsky, Mario January 2013 (has links) (PDF)
In der vorliegenden Arbeit wurden extraflorale Nektarien (EFN) von Populus trichocarpa (Ptr) und Populus tremula x Populus tremuloides (Ptt) hinsichtlich ihrer funktionellen Eigenschaften bei der indirekten Herbivoren-Abwehr untersucht. Die gewonnenen Erkenntnisse lassen sich wie folgt zusammenfassen: Nektarien-Funktion und -Regulation: Beide untersuchten EFN-Arten sind in der Lage, die jeweilige Pappel indirekt vor Schädigung durch Herbivoren zu schützen. Dies zeigte nicht zuletzt der jeweils beobachtete kontinuierliche Besuch verschiedenster Insektenarten. Vor allem Ameisen aber auch Bienen zählten zu Besuchern sowohl von Ptr als auch Ptt. Die Effektivität so angelockter Besucher konnte durch Interaktionsversuche mit Bienen bestätigt werden und belegte, dass allein die Anwesenheit von Bienen zu einer eindeutigen Reduktion des herbivoren Blattschadens führt (Ptr und Ptt). Obwohl beide Pflanzen derselben Gattung (Populus) angehören, konnte bestätigt werden, dass Ptr und Ptt unterschiedliche Herbivoren-Abwehrstrategien entwickelt haben. Während es sich bei Ptt-EFN um konstitutiv vorhandene Organe handelt, zeigten Ptr-Pflanzen eine gezielte Bildung von Nektarien/Nektar erst nach Herbivorenbefall. Dabei scheinen spezifische, durch Herbivoren erzeugte Signale für die Induktion verantwortlich zu sein. Die Freisetzung der nach Herbivorenbefall typischen, flüchtigen organischen Verbindungen (VOCs) in Ptr konnte zwar als Jasmonsäure-abhängig identifiziert, der Jasmonsäure-Signalweg, der schon als Auslöser für extraflorale Nektar-Produktion bei z.B. Limabohne gezeigt worden war, als alleiniges Steuerelement aber ausgeschlossen werden. Ein Zusammenspiel mehrerer Hormone bei der Regulation der indirekten Herbivoren-Abwehr in Ptr durch Nektarien/Nektar-Induktion ist deshalb sehr wahrscheinlich. Dies bekräftigten auch die Transkriptomanalysen von Ptt-Nektarien. Hier konnte gezeigt werden, dass sowohl Jasmonsäure als auch Auxin und Salicylsäure eine wichtige Rolle spielen. Darüber hinaus lieferten verschiedene differentiell regulierte Gencluster, die in Zusammenhang mit Nektarien-Funktion, -Entwicklung und biotischem Stress stehen, deutliche Hinweise auf die entscheidende Rolle extrafloraler Nektarien bei der Herbivoren-Abwehr. Nektar-Produktion: Die Analyse extrafloraler Nektar-Proteine und zugehöriger Transkripte zeigte nicht nur, dass beide Pappelarten über eine ähnliche, von antimikrobiellen Proteinen dominierte Nektar-Proteinzusammensetzung verfügen, sondern auch, dass bei beiden die Produktion dieser Proteine hauptsächlich direkt in den Drüsenorganen stattfindet. Es deutete außerdem alles darauf hin, dass der Zucker des Ptt-Nektars direkt im Nektarienparenchym produziert wird, und dass dafür ein apoplastischer Schritt notwendig ist, der gleichzeitig über das „Source und Sink“ Verhältnis den Nachschub von Saccharose ins Nektarienparenchym reguliert. Nektar-Sekretion: Die unterschiedlichen Hauptsekretionsarten der beiden Pappeln konnten ebenfalls gezeigt werden. Während Ptt-Nektar eindeutig granulokrin sekretiert wird, konnte dieser Weg für Ptr ausgeschlossen werden. Deshalb scheint Ptr holokrine Sekretion zu bevorzugen. In Ptt fanden sich außerdem Belege für eine parallel ablaufende ekkrine Sekretion. Hierfür wird die initiale Abgabe osmotisch wirksamer Substanzen und nachfolgend Wasser vorausgesetzt. Der Anionenkanal PttSLAH3 zeigte sich, ausgehend von der Anionenzusammensetzung des Nektars und der Lokalisation des Proteins in den epidermalen Drüsenzellen als optimales Transportprotein für diesen Schritt. Die typischen Eigenschaften eines S-Typ-Anionenkanals vom Typ des Arabidopsis-SLAH3, wie Nitratabhängigkeit und spezifische Anionenpermeabilität wiesen darauf hin, dass PttSLAH3 für die finale „nasse“ Sekretion verantwortlich sein kann. Im Unterschied zu AtSLAH3 scheint die Aktivierung von PttSLAH3 allerdings auf andere Weise zu erfolgen. Denn im Gegensatz zum Arabidopsis-Ortholog, zeigte PttSLAH3 in Xenopus-Oozyten bereits ohne koexprimierte Kinase Aktivität. Grundsätzlich konnte eine Aktivierung durch Phosphorylierung aber nicht ausgeschlossen werden. Es deutete vielmehr alles darauf hin, dass bereits Oozyten-endogene Kinasen eine entscheidende Rolle bei der Aktivierung von PttSLAH3 spielen. Eine entsprechende Phosphorylierungsstelle konnte jedoch nicht ausgemacht werden. Allerdings deuteten die Ergebnisse im Weiteren darauf hin, dass die unterschiedliche Struktur der AtSLAH3- und PttSLAH3-Termini, im Besonderen die des N-Terminus, für die konstitutive Aktivität des Pappel-Kanals verantwortlich ist. Damit kommt PttSLAH3 eine Sonderstellung innerhalb der SLAC/SLAH-Familie zu, die weiterer Untersuchungen bedarf. / In this study extrafloral nectaries (EFN) of Populus trichocarpa (Ptr) and Populus tremula x Populus tremuloides (Ptt) were analyzed in terms of their functional properties regarding indirect defense against herbivores. The findings can be summarized as follows: Nectary function and regulation: Both EFN-types were able to protect poplar leaves from damage by herbivores. This finding was confirmed in Ptr as well as Ptt, by continuous visits of various insect species, particularly ants and bees. Protection mediated by these visitors could be confirmed with interaction studies using bees, in which the presence of bees led to a significant reduction of leaf herbivory (Ptr and Ptt). Although both plants belong to the same genus (Populus), it turned out that Ptr and Ptt have developed different EFN-based herbivore defense strategies. While Ptt-EFN are constitutively present and secreting, Ptr plants revealed nectary and nectar formation only upon herbivore attack. However, herbivore-specific elicitors, may be responsible for the induction in Ptr. Even though the release of herbivore-induced volatile organic compounds (VOCs) could be identified as jasmonic acid-dependent, the jasmonic acid signaling pathway, in contrast to studies with lima bean, could be excluded for triggering extrafloral nectar secretion in Ptr. Therefore, regulation of Ptr-EFN-based herbivore defense is very likely controlled via an interaction of several hormones. This finding was confirmed by transcriptome analysis in Ptt-nectaries, where jasmonic acid, auxin and salicylic acid appeared to be involved. In addition, various differentially regulated gene clusters associated with nectary function, development and biotic stress, clearly indicated the crucial role of extrafloral nectaries regarding herbivore defense. Nectar production: The analysis of extrafloral nectar proteins and associated transcripts revealed that nectar of both species is composed from a similar blend of antimicrobial proteins. In addition, it seems that in both species these proteins are synthesized predominantly in the nectaries themselves. Moreover, Ptt-nectar-specific sugar production appears to be executed mainly in the nectary parenchyma. There an apoplastic step is required to process sucrose, provided by the phloem, which as a result regulates the source and sink relationship and thereby maintains sucrose supplies. Nectar secretion: For both poplars two different secretion types could be confirmed. While Ptt nectar is secreted clearly granulocrine, this secretion type could be excluded for Ptr. Therefore, Ptr seems to prefer holocrine secretion. In the case of Ptt evidences of a possible parallel eccrine secretion could be found. Prerequisite is an initial release of osmotically active substances followed by water efflux. Starting with anion composition of the nectar and the localization of the protein in the epidermal nectary cells, one might suggest that the anion channel PttSLAH3 is an optimal transport protein for this initial step. The observed biophysical characteristics, such as nitrate dependency and specific anion permeability, were typical of an S-type anion channel like SLAH3 in Arabidopsis. This indicated that PttSLAH3 may be responsible for such a “wet” secretion in Ptt. However, in contrast to AtSLAH3, PttSLAH3 seems to be activated differently. Unlike the Arabidopsis-orthologe, PttSLAH3 expressed in Xenopus oocytes revealed channel activity, even in the absence of co-expressed kinases. However, phosphorylation by specific kinases could not be excluded in general. Instead, all of the available evidence suggests that oocyte endogenous kinases play a crucial role in the activation of PttSLAH3, although no corresponding phosphorylation site could be identified. Nevertheless, the results are indicating that structural differences of the AtSLAH3- and PttSLAH3-termini, in particular the N-terminus, are responsible for the constitutive activity of the poplar channel. Therefore PttSLAH3 takes on a special position within the SLAC/SLAH-family, however further investigations are necessary.
5

Ecophysiological adaptations of cuticular water permeability of plants to hot arid biomes / Ökophysiologische Anpassungen der kutikulären Wasserpermeabilität von Pflanzen an heiße aride Biome

Bergmann Bueno, Amauri January 2021 (has links) (PDF)
Arid environments cover almost one-third of the land over the world. Plant life in hot arid regions is prone to the water shortage and associated high temperatures. Drought-stressed plants close the stomata to reduce water loss. Under such conditions, the remaining water loss exclusively happens across the plant cuticle. The cuticular water permeability equals the minimum and inevitable water loss from the epidermal cells to the atmosphere under maximally stomatal closure. Thus, low cuticular water permeability is primordial for plant survival and viability under limited water source. The assumption that non-succulent xerophytes retard water loss due to the secretion of a heavier cuticle is often found in the literature. Intuitively, this seems to be plausible, but few studies have been conducted to evaluate the cuticular permeability of xerophilous plants. In chapter one, we investigated whether the cuticular permeability of Quercus coccifera L. grown in the aridest Mediterranean-subtype climate is indeed lower than that of individuals grown under temperate climate conditions. Also, the cuticular wax chemical compositions of plants grown in both habitats were qualitatively and quantitatively analysed by gas-chromatography. In few words, our findings showed that although the cuticular wax deposition increased in plants under Mediterranean climate, the cuticular permeability remained unaltered, regardless of habitat. The associated high temperatures in arid regions can drastically increase the cuticular water permeability. Thereby, the thermal stability of the cuticular transpirational barrier is decisive for safeguarding non-succulent xerophytes against desiccation. The successful adaptation of plants to hot deserts might be based on finding different solutions to cope with water and heat stresses. Water-saver plants close the stomata before the leaf water potential drastically changes in order to prevent damage, whereas water-spender plants reduce the leaf water potential by opening the stomata, which allow them to extract water from the deep soil to compensate the high water loss by stomatal transpiration. In chapter two, we compare the thermal stability of the cuticular transpiration barrier of the desert water-saver Phoenix dactylifera L. and the water-spender Citrullus colocynthis (L.) Schrad. In short, the temperature-dependent increase of the cuticular permeability of P. dactylifera was linear over the whole temperature range (25-50°C), while that of C. colocynthis was biphasic with a steep increase at temperatures ≥ 40°C. This drastic increase of cuticular permeability indicates a thermally induced breakdown of the C. colocynthis cuticular transpiration barrier, which does not occur in P. dactylifera. We further discussed how the specific chemical composition of the cutin and cuticular waxes might contribute to the pronounced thermal resistance of the P. dactylifera cuticular transpiration barrier. A multitude of morpho and physiological modifications, including photosynthetic thermal tolerance and traits related to water balance, led to the successful plant colonisation of hot arid regions over the globe. High evaporative demand and elevated temperatures very often go along together, thereby constraining the plant life in arid environments. In chapter 3, we surveyed cuticular permeability, leaf thermal tolerance, and cuticular wax chemical composition of 14 non-succulent plant species native from some of the hottest and driest biomes in South-America, Europe, and Asia. Our findings showed that xerophilous flowering plants present high variability for cuticular permeability and leaf thermal tolerance, but both physiological features could not be associated with the species original habitat. We also provide substantial evidence that non-succulent xerophytes with more efficient cuticular transpirational barrier have higher leaf thermal tolerance, which might indicate a potential coevolution of these features in hot arid biomes. We further discussed the efficiency of the cuticular transpiration barrier in function to the cuticular wax chemical composition in the general discussion section. / Trockene Trockene Lebensräume bedecken fast ein Drittel der Landoberfläche der Erde. Das Pflanzenleben in Trockengebieten ist durch Wasserknappheit und hohe Temperaturen gekennzeichnet. Durch Trockenheit beanspruchte Pflanzen schließen die Stomata, um den Wasserverlust zu reduzieren. Unter diesen Bedingungen erfolgt der verbleibende Wasserverlust ausschließlich über die pflanzliche Kutikula. Die kutikuläre Wasserpermeabilität entspricht dem minimalen und unvermeidbaren Wasserverlust aus den Epidermiszellen an die Atmosphäre. Daher ist eine niedrige kutikuläre Wasserpermeabilität für die Lebensfähigkeit der Pflanzen unter begrenzter Wasserverfügbarkeit entscheidend. Die Annahme, dass xerophile Pflanzen den Wasserverlust aufgrund der Ausbildung einer speziellen Kutikula verringern, findet sich häufig in der Literatur. Intuitiv erscheint dies plausibel, jedoch wurden nur wenige Studien durchgeführt, um die kutikuläre Wasserpermeabilität von xerophilen Pflanzen zu untersuchen. Im ersten Kapitel wurde getestet, ob die kutikuläre Wasserpermeabilität von Quercus coccifera L., angezogen im ariden Klima des mediterranen Subtyps, tatsächlich geringer ist als die von Pflanzen derselben Art, die unter gemäßigten Klimabedingungen kultiviert wurden. Außerdem wurde die chemische Zusammensetzung der kutikulären Wachse von Pflanzen, die in beiden Habitaten angezogen wurden, quantitativ und qualitativ durch Gaschromatographie mit Flammenionisationsdetektion- beziehungsweise Massenspektrometrie-Kopplung analysiert. Die Ergebnisse zeigen, dass die kutikuläre Wasserpermeabilität unter beiden Anzuchtbedingungen vergleichbar war, obwohl die Pflanzen, die unter dem mediterranen Klima wuchsen, eine höhere Menge an kutikulären Wachsen aufwiesen. Die hohen Temperaturen in trockenen Regionen können die Wasserdurchlässigkeit der pflanzlichen Kutikula drastisch erhöhen. Dabei ist die thermische Stabilität der kutikulären Transpirationsbarriere entscheidend für den Austrocknungsschutz xerophiler Pflanzen. Die erfolgreiche Anpassung von Wüstenpflanzen kann auf verschiedenen Strategien zur Bewältigung von Wassermangel und Hitze beruhen. Wassersparende Pflanzen (water-save plants) schließen die Stomata, bevor sich das Wasserpotenzial drastisch ändert, um Schädigungen zu verhindern. Wasserverschwendende Pflanzen (water-spender plants) reduzieren das Wasserpotenzial durch das Öffnen der Stomata. Dadurch können diese Pflanzen Wasser aus tiefen Bodenschichte nachziehen, um den hohen stomatären Wasserverlust zu kompensieren. Im zweiten Kapitel wurde die thermische Stabilität der kutikulären Transpirationsbarriere der beiden Wüstenpflanzen Phoenix dactylifera L. (saver) und Citrullus colocynthis (L.) Schrad. (spender) verglichen. Der temperaturabhängige Anstieg der kutikulären Wasserpermeabilität von P. dactylifera verlief linear über einen Temperaturbereich von 25°C bis 50°C. Dagegen war der temperaturabhängige Anstieg der kutikulären Wasserpermeabilität von C. colocynthis zweiphasig. Der steile Anstieg der kutikulären Permeabilität bei Temperaturen ≥ 35°C weist auf eine thermisch induzierte Schädigung der kutikulären Transpirationsbarriere hin. Die spezielle chemische Zusammensetzung der Kutinmatrix und der kutikulären Wachse trägt zur ausgeprägten thermischen Resistenz der kutikulären Transpirationsbarriere von P. dactylifera bei. Die erfolgreiche Besiedlung von heißen und trockenen Regionen der Erde beruht auf einer Vielzahl von morphologischen und physiologischen Anpassungen wie der fotosynthetischen Hitzetoleranz. Eine hohe Verdunstungskapazität und hohe Temperaturen treten oft zusammen auf, wodurch das Pflanzenleben in ariden Klimazonen eingeschränkt wird. In Kapitel 3 wurde die kutikuläre Wasserpermeabilität, die kutikuläre Wachszusammensetzung sowie die fotosynthetische Hitzetoleranz von 14 nicht-sukkulenten Pflanzenarten aus einigen der heißesten und trockensten Biome Südamerikas, Europas und Asiens untersucht. Die Ergebnisse zeigen, dass die ausgewählten xerophilen Pflanzen eine hohe Variabilität in der kutikulären Wasserpermeabilität und der fotosynthetischen Hitzetoleranz aufwiesen. Beide physiologischen Merkmale konnten jedoch nicht mit dem ursprünglichen Standort der Arten assoziiert werden. Dennoch weisen xerophile Pflanzen mit einer effizienteren kutikulären Transpirationsbarriere eine höhere Hitzetoleranz auf, was auf eine mögliche Koevolution dieser Merkmale in trockenen Biomen hinweisen könnte. Darüber hinaus wurde die Effizienz der kutikulären Transpirationsbarriere in Zusammenhang mit der chemischen Zusammensetzung der kutikulären Wachse diskutiert
6

Development of new channelrhodopsin versions with enhanced plasma membrane targeting and high calcium/sodium conductance / Entwicklung neuer Channelrhodopsin-Versionen mit verbessertem Plasmamembrantargeting und hoher Na+- und Ca2+-Leitfähigkeit

Duan, Xiaodong January 2021 (has links) (PDF)
The technique to manipulate cells or living animals by illumination after gene transfer of light-sensitive proteins is called optogenetics. Successful optogenetics started with the use of the light-gated cation channel channelrhodopsin-2 (ChR2). After early demonstrations of the power of ChR2, further light-sensitive ion channels and ion pumps were recruited to the optogenetic toolbox. Furthermore, mutations and chimera of ChR2 improved its versatility. However, there is still a need for improved optogenetic tools, e.g. with higher permeability for calcium or better expression in the plasma membrane. In this thesis, my work focuses on the design of highly functional channelrhodopsins with enhanced Na+ and Ca2+ conductance. First, I tested different N-terminal signal peptides to improve the plasma membrane targeting of Channelrhodopsins. We found that a N-terminal peptide, named LR, could improve the plasma membrane targeting of many rhodopsins. Modification with LR contributed to three to ten-fold larger photocurrents (than that of the original version) of multiple channelrhodopsins, like ChR2 from C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs, and the light-activated pump rhodopsins KR2, Jaw, HR. Second, by introducing point mutation, I could further improve the light sensitivity and photocurrent of different channelrhodopsins. For instance, ChR2-XXM 2.0, ChR2-XXL 2.0 and PsChR D139H 2.0 exhibited hundred times larger photocurrents than wild type ChR2 and they show high light sensitivity. Also, the Ca2+ permeable channelrhodopsins PsCatCh 2.0f and PsCatCh 2.0e show very large photocurrents and fast kinetics. In addition, I also characterized a novel bi-stable CeChR (from the acidophilic green alga Chlamydomonas eustigma) with a much longer closing time. Third, I analysed the ion selectivity of different ChRs, which provides a basis for rational selection of channelrhodopsins for different experimental purposes. I demonstrate that ChR2, Chronos, Chrimson, CheRiff and CeChR are highly proton conductive, compared with wild type PsChR. Interestingly, Chronos has the lowest potassium conductance among these channelrhodopsins. Furthermore, I found that mutation of an aspartate in TM4 of ChR2 (D156) and PsChR (D139) to histidine obviously increased both the sodium and calcium permeability while proton conductance was reduced. PsChR D139H 2.0 has the largest sodium conductance of any published channelrhodopsin variants. Additionally, I generated PsCatCh 2.0e which exhibits a ten-fold larger calcium current than the previously reported Ca2+ transporting CrChR2 mutant CatCh. In summary, my research work 1.) described strategies for improving plasma membrane trafficking efficiency of opsins; 2.) yielded channelrhodopsins with fast kinetics or high light sensitivity; 3.) provided optogenetic tools with improved calcium and sodium conductance. We could also improve the performance of channelrhodopsins with distinct action spectra, which will facilitate two-color neural excitation, both in-vitro and in-vivo. / Die Technik, Zellen oder lebende Tiere nach dem Gentransfer lichtempfindlicher Proteine durch Belichtung zu manipulieren, wird als Optogenetik bezeichnet. Erfolgreiche Optogenetik begann mit der Verwendung des lichtgesteuerten Kationenkanals Channelrhodopsin-2 (ChR2). Nach frühen erfolgreichen Versuchen mit ChR2 wurden weitere lichtempfindliche Ionenkanäle und Ionenpumpen als optogenetische Werkzeuge etabliert. Darüber hinaus verbesserten Mutationen und Chimären von ChR2 seine Vielseitigkeit. Es besteht jedoch immer noch ein Bedarf an verbesserten optogenetischen Werkzeugen, z. mit höherer Permeabilität für Calcium oder besserer Expression in der Plasmamembran. In dieser Arbeit beschäftige ich mich mit dem Design hochfunktioneller Channelrhodopsine mit verbesserter Na+- und Ca2+-Leitfähigkeit. Zuerst habe ich verschiedene N-terminale Signalpeptide getestet, um die Anreicherung von Channelrhodopsinen in der Plasmamembran (“Plasmamembran-Targeting”) zu verbessern. Wir fanden heraus, dass ein N-terminales Peptid namens LR das Plasmamembran-Targeting vieler Rhodopsine verbessern kann. Die Modifikation mit LR trug zu drei- bis zehnfach größeren Photoströmen (als die der Originalversion) von mehreren Channelrhodopsinen bei, wie ChR2 von C. reinhardtii (CrChR2), PsChR, Chrimson, CheRiff, CeChR, ACRs und der lichtaktivierten Pump-Rhodopsine KR2, Jaw, HR. Zweitens konnte ich durch Mutagenese die Lichtempfindlichkeit und/oder den Photostrom verschiedener Channelrhodopsine weiter verbessern. Beispielsweise zeigten ChR2-XXM 2.0, ChR2-XXL 2.0 und PsChR D139H 2.0 hundertmal größere Photoströme als Wildtyp-ChR2 und sie zeigen eine hohe Lichtempfindlichkeit. Auch die Ca2+-permeablen Kanalrhodopsine PsCatCh 2.0f und PsCatCh 2.0e zeigen sehr große Photoströme und eine schnelle Kinetik. Außerdem habe ich ein neues bistabiles CeChR (aus der azidophilen Grünalge Chlamydomonas eustigma) mit einer viel längeren Schließzeit charakterisiert. Drittens analysierte ich die Ionenselektivität verschiedener ChRs, die eine Grundlage für die rationale Selektion von Channelrhodopsinen für verschiedene experimentelle Zwecke bietet. Ich zeige, dass ChR2, Chronos, Chrimson, CheRiff und CeChR im Vergleich zu Wildtyp-PsChR eine hohe Protonenleitfähigkeit aufweisen. Interessanterweise weist Chronos die niedrigste Kaliumleitfähigkeit unter diesen Channelrhodopsinen auf. Außerdem fand ich, dass die Mutation eines Aspartats in TM4 von ChR2 (D156) und PsChR (D139) zu Histidin offensichtlich sowohl die Natrium- als auch die Calciumpermeabilität erhöht, während die Protonenleitfähigkeit verringert ist. PsChR D139H 2.0 weist die größte Natriumleitfähigkeit aller veröffentlichten Channelrhodopsin-Varianten auf. Zusätzlich erzeugte ich PsCatCh 2.0e, das einen zehnmal größeren Calciumstrom als die zuvor berichtete Ca2+-transportierende CrChR2-Mutante CatCh aufweist. Zusammenfassend ergab meine Dissertationsarbeit: 1.) Strategien zur Verbesserung der Expression von Opsinen in der Plasmamembran; 2.) Gut exprimierende Channelrhodopsine mit schneller Kinetik oder hoher Lichtempfindlichkeit; 3.) Neue optogenetische Werkzeuge mit verbesserter Calcium- und Natriumleitfähigkeit. Auch konnte ich die Leistung von Channelrhodopsinen mit unterschiedlichen Aktionsspektren verbessern, was die zweifarbige neuronale Anregung sowohl in vitro als auch in vivo erleichtern sollte.
7

Regulation of sphingolipid long-chain bases during cell death reactions and abiotic stress in \(Arabidopsis\) \(thaliana\) / Regulation von Sphingobasen während der Zelltodreaktion und abiotischem Stress in \(Arabidopsis\) \(thaliana\)

Lambour, Benjamin January 2023 (has links) (PDF)
Sphingobasen (LCBs) sind die Bausteine der Biosynthese von Sphingolipiden. Sie werden als Strukturelemente der pflanzlichen Zellmembran definiert und spielen eine wichtige Rolle für das Schicksal der Zellen. Komplexe Ceramide machen einen wesentlichen Teil der gesamten Sphingolipide aus, die einen großen Teil der eukaryotischen Membranen bilden. Gleichzeitig sind LCBs bekannte Signalmoleküle für zelluläre Prozesse in Eukaryonten und sind an Signalübertragungswegen in Pflanzen beteiligt. Es hat sich gezeigt, dass hohe LCB-Konzentrationen mit der Induktion des programmierten Zelltods sowie mit dem durch Pathogene ausgelösten Zelltod in Verbindung stehen. Mehrere Studien haben die regulierende Funktion der Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen bestätigt: (i) Spontaner PCD und veränderte Zelltodreaktionen, die durch mutierte verwandte Gene des Sphingobasen-Stoffwechsels verursacht werden. (ii) Zelltodbedingungen erhöhen den Gehalt an LCBs. (iii) PCD aufgrund eines gestörten Sphingolipid-Stoffwechsels, der durch von nekrotrophen Krankheitserregern produzierte Toxine wie Fumonisin B1 (FB1) hervorgerufen wird. Um den Zelltod zu verhindern und die Zelltodreaktion zu kontrollieren, kann daher die Regulierung des Gehalts an freien LCBs entscheidend sein. Die Ergebnisse der vorliegenden Studie stellten das Verständnis der Sphingobasen und Sphingolipidspiegel während der PCD in Frage. Wir lieferten eine detaillierte Analyse der Sphingolipidspiegel, die Zusammenhänge zwischen bestimmten Sphingolipidarten und dem Zelltod aufzeigte. Darüber hinaus ermöglichte uns die Untersuchung der Sphingolipid-Biosynthese ein Verständnis des Fluxes nach Akkumulation hoher LCB-Konzentrationen. Weitere Analysen von Abbauprodukten oder Sphingolipid-Mutantenlinien wären jedoch erforderlich, um vollständig zu verstehen, wie die Pflanze mit hohen Mengen an Sphingobasen umgeht. / Sphingolipid long-chain bases (LCBs) are the building blocks of the biosynthesis of sphingolipids. They are defined as structural elements of the plant cell membrane and play an important role determining the fate of the cells. Complex ceramides represent a substantial fraction of total sphingolipids which form a major part of eukaryotic membranes. At the same time, LCBs are well known signaling molecules of cellular processes in eukaryotes and are involved in signal transduction pathways in plants. High levels of LCBS have been shown to be associated with the induction of programmed cell death as well as pathogen-derived toxin-induced cell death. Indeed, several studies confirmed the regulatory function of sphingobases in plant programmed cell death (PCD): (i) Spontaneous PCD and altered cell death reaction caused by mutated related genes of sphingobase metabolism. (ii) Cell death conditions increases levels of LCBs. (iii) PCD due to interfered sphingolipid metabolism provoked by toxins produced from necrotrophic pathogens, such as Fumonisin B1 (FB1). Therefore, to prevent cell death and control cell death reaction, the regulation of levels of free LCBs can be crucial. The results of the present study challenged the comprehension of sphingobases and sphingolipid levels during PCD. We provided detailed analysis of sphingolipids levels that revealed correlations of certain sphingolipid species with cell death. Moreover, the investigation of sphingolipid biosynthesis allowed us to understand the flux after the accumulation of high LCB levels. However, further analysis of degradation products or sphingolipid mutant lines, would be required to fully understand how high levels of sphingobases are being treated by the plant.
8

Rolle und Regulation von Anionenkanälen während der Stomabewegung als Reaktion auf Licht, CO2 und Wasserstress / Role and regulation of anion channels during stomatal movements in response to light, CO2 and water stress

Marten, Holger January 2008 (has links) (PDF)
Die Stomata in der Epidermis von Pflanzen sind Poren, die den Gasaustausch mit der Atmosphäre regulieren. Die Öffnungsweite der Stomata kann verändert werden, was eine Optimierung der CO2 Aufnahme für die Photosynthese ermöglicht und gleichzeitig den Wasserverlust durch Transpiration minimiert. Um diese Funktion zu erfüllen, können Stomata verschiedene Stimuli wie Wasserstress (durch Abscisinsäure), Licht und CO2 wahrnehmen. Die oben genannten Reize führen dann zu einer Aufnahme oder Abgabe von osmotisch aktiven Substanzen in zwei Schließzellen, welche die Stomaöffnung kontrollieren. Die Rezeptoren zur Wahrnehmung dieser Stimuli, die intrazellulären Signalwege und die beteiligten Ionentransportproteine in den Schließzellen sind nur lückenhaft bekannt. In dieser Arbeit lag ein Hauptaugenmerk auf der Rolle von Anionenkanälen der Plasmamembran bei Stomabewegungen, sowie auf den Signalwegen welche diese Kanäle steuern. Die Aktivität der Anionenkanäle wurde mit der DEVC (Double Electrode Voltage Clamp) Einstich-Methode in Schließzellen in der intakten Pflanze gemessen, kombiniert mit Calcium Imaging durch den Ca2+ Indikator Farbstoff FURA2. Stomaschlussreaktionen werden durch Abscisinsäure (ABA), CO2 und Dunkelheit induziert und bei allen drei Stimuli konnten wir in Nicotiana tabacum eine Aktivierung von Anionenkanälen beobachten. Das führt zu Anionenefflux aus den Schließzellen und einer Depolarisation der Plasmamembran, was wiederum Kalium-Efflux-Kanäle spannungsabhängig aktiviert. Der resultierende Verlust osmotisch aktiver Teilchen führt dann zu Turgorabnahme der Schließzellen und Stomaschluss. Das zeitliche Muster der Anionenkanalaktivität bei dem Stomaschluss, ausgelöst durch CO2, Dunkelheit und ABA war bei allen Reizen ähnlich. Es zeigte sich eine charakteristische transiente starke und darauf folgende schwächere Anionenkanalaktivität. Dieses konservierte Muster lässt Überschneidungen bei der Signaltransduktion der verschiedenen Stimuli vermuten. Die gesteigerte Aktivität der Anionenkanäle während der Reaktion auf ABA und Dunkelheit wurde in ungefähr der Hälfte der Antworten von einem Anstieg der zytosolischen Ca2+ Konzentration begleitet. Bei beiden Stimuli scheinen somit Ca2+ abhängig und unabhängig Signale intrazellulär weitergeleitet zu werden. Allerdings war der Effekt der Ca2+ Signale auf die Aktivität der Anionenkanäle bei den beiden Stimuli unterschiedlich. Eine zytosolisch erhöhte Ca2+ Konzentration konnte bei Antworten auf ABA nicht mit einer erhöhten Anionenkanalaktivität in Verbindung gebracht werden, bei Dunkelheit hingegen wurde die Aktivität der Anionenkanäle in Anwesenheit von Ca2+ gesteigert. Die wichtige Rolle von Anionenkanälen beim Stomaschluss lässt vermuten, dass ihre Deaktivierung eine Vorraussetzung für eine Stomaöffnung ist. Blaulicht führt bei niedrigen Photonen-Fluss Raten zu Stomaöffnung und sollte daher Anionenkanäle inhibieren. Übereinstimmend damit konnten wir tatsächlich zeigen, dass Blaulicht in Schließzellen von Vicia faba und Arabidopsis thaliana Anionenkanäle deaktiviert. Diese Deaktivierung ist von den Phototropin-Blaulichtrezeptoren abhängig, da die Deaktivierung der Anionenkanäle in Arabidopsis thaliana phot1/phot2 Doppelmutanten nicht beobachtet werden konnte. Neben einer Blaulicht spezifischen Antwort öffnen Stomata auch in Antwort auf photosynthetisch aktive Strahlung (PAR). Die PAR Wahrnehmung scheint zu einem wesentlichen Teil über Veränderungen der interzellulären CO2 Konzentration, ausgelöst durch die Photosyntheseaktivität des Mesophylls, stattzufinden (Roelfsema et al., 2002). In Übereinstimmung mit dieser Hypothese konnten wir in Schließzellen in Albino Blattarealen von Chlorophytum comosum und gebleichten Vicia faba keine Reaktion auf PAR beobachten, obwohl Schließzellen von Chlorophytum comosum in Albino Bereichen funktionierende Chloroplasten besitzen. Die Rolle von CO2 bei der PAR Antwort haben wir des Weiteren in NtMPK4 antisense Pflanzen untersucht. Stomata von NtMPK4 antisense Pflanzen haben nicht auf Änderungen in der atmosphärischen CO2 Konzentration reagiert und zeigten eine stark reduzierte Antwort auf PAR. Diese Ergebnisse bestätigen die wichtige Rolle der intrazellulären CO2 Konzentration bei der PAR Antwort, sie zeigen aber auch, dass es anscheinend zusätzlich zu CO2 noch ein weiteres PAR abhängiges Signal für Stomaöffnung gibt. / Stomata in the epidermis of plants are pores, which regulate the gas exchange with the atmosphere. The aperture of these stomata can be altered and thus enable the plant to optimize the uptake of CO2 for photosynthesis, while minimizing loss of water via transpiration. To fulfil this function, stomata are able to sense several stimuli like water stress (through abscisic acid), light and CO2. The mentioned stimuli can induce accumulation in or release of osmotically active substances from two guard cells that control the stomatal aperture. The receptors for perception of these stimuli, the intracellular signal transduction pathways and the involved ion transporters of the guard cells are only partially resolved. This work focuses on the role of plasma membrane anion channels during stomatal movements and the signal transduction pathways that controls these channels. The activity of the anion channels was studied with the DEVC (double electrode voltage clamp) impalement method, in combination with FURA2 based calcium imaging in guard cells located in intact plants. Closure of stomata is induced by abscisic acid (ABA), CO2 and darkness and all these stimuli were found to activate anion channels in Nicotiana tabacum. This response not only leads to an anion efflux from the guard cells, but also causes depolarization of the plasma membrane, which in turn activates voltage dependent potassium efflux channels. As a result, osmotically active particles are lost, causing a decrease of the guard cell turgor and stomatal closure. The timing of anion channel activation in response to CO2, darkness and ABA displayed a similar pattern for all three stimuli. It was characterized by a transient strong-, followed by a steady low activity of anion channels. This conserved pattern suggests conserved steps in the signal transduction pathways of these stimuli. The activation of anion channels in response to ABA and darkness was in approximately half of the responses accompanied by an increase in the cytosolic Ca2+ concentration. This suggests that ABA and darkness are transmitted through Ca2+-dependent as well as Ca2+-independent signalling pathways. However, the effect of Ca2+ signals on the degree on anion channel activity differed for both stimuli. During ABA responses, an increase in the cytosolic Ca2+ concentration could not be linked to enhanced anion channel activity, but Ca2+ signals were related to large anion currents in responses to darkness. The important role of anion channels for inducing stomatal closure suggests that their deactivation is a prerequisite for stomatal opening. Blue light provokes stomatal opening, at low photon flux densities, and thus should inhibit anion channels in guard cells. We were able to show that blue light indeed deactivates anion channels in Vicia faba and Arabidopsis thaliana. This response depends on phototropin blue light receptors, because it was not observed in Arabidopsis thaliana phot1/phot2 double mutants. In addition to a blue light-specific response, stomata open in response to photosynthetically active radiation (PAR). The perception of PAR seems to depend mainly on a decrease of the intercellular CO2 concentration, which is caused by photosynthetic activity of the mesophyll (Roelfsema et al., 2002). In agree with this proposed mechanism, we observed no response to PAR in guard cells located in albino leaf areas of Chlorophytum comosum and bleached Vicia faba, even though guard cells of Chlorophytum comosum in albino areas contain functional chloroplasts. We further studied the role of CO2 in the PAR response with NtMPK4 antisense plants. Stomata of NtMPK4 silenced plants did not respond to changes in the atmospheric CO2 concentration and showed a strongly reduced response to PAR. These data thus confirms the important role of intracellular CO2 in the PAR response, but also point to an additional PAR dependent signal for stomatal opening.
9

Bildung und Funktion von Jasmonaten während Seneszenz-Prozessen in Arabidopsis thaliana / Formation an Function of Jasmonates during Senescence-Processes in Arabidopsis thaliana

Seltmann, Martin Alexander January 2010 (has links) (PDF)
Jasmonsäure und verwandte Oxylipine wurden bisher als Substanzen, die an der Regulation von Initialisierung und Progression der Blattseneszenz beteiligt sein sollen, kontrovers diskutiert. Bisherige Studien haben sich dabei auf die exogene Applikation von Jasmonaten oder die Messung endogener Spiegel beschränkt. Um die Funktion von Jasmonaten in der Seneszenz-Regulation zu klären, wurden in dieser Arbeit die Profile freier und membranveresterter Oxylipine sowie die Auswirkungen verminderter Oxylipinbildung während der natürlichen Seneszenz und Seneszenz-ähnlicher Prozesse induziert durch Dunkel- und Sorbitol-Inkubation in Blättern von Arabidopsis thaliana untersucht. Jasmonsäure sowie freie 12-Oxo-Phytodiensäure steigen während dieser drei Prozesse an, mit dem stärksten Anstieg von Jasmonsäure nach Dunkelinkubation. Eine deutliche Akkumulation membranveresterter Oxylipine (Arabidopside) konnte lediglich nach Flottierung auf Sorbitol festgestellt werden. Die Mengen an plastidären Mono- und Digalaktosyl-Diacylglycerolen verringerten sich jedoch während der Behandlungen bzw. im Verlauf der Alterung. Zur Untersuchung möglicher Funktionen ansteigender Jasmonat-Konzentrationen wurden Lipoxygenase 2 RNAi-Pflanzen konstruiert, welche basal Jasmonsäure und 12-Oxo-Phytodiensäure produzieren können, jedoch keinen Anstieg während Seneszenz- bzw. Stress-Prozessen zeigen. Die Gehalte an Chlorophyll und Membranlipiden sowie die Genexpression entwicklungsspezifischer Seneszenzmarker waren während der natürlichen und der dunkelinduzierten Seneszenz in diesen Pflanzen nicht verändert. Dies legt nahe, dass diese Oxylipine im Verhältnis zu anderen endogenen Faktoren keine bzw. nur geringe Wirkungen auf die Seneszenz-Progression haben. Aus den gemachten Beobachtungen kann vielmehr geschlossen werden, dass bei diesen Prozessen die Akkumulation von Jasmonaten eher die Folge eines veränderten Lipid-Metabolismus als ein Auslöser der Seneszenz ist. Im Gegensatz dazu zeigen die Lipoxygenase 2 RNAi-Linien eine verlangsamte Seneszenz nach Sorbitol-Behandlung. Ähnlich verhält sich die Allenoxid-Synthase Mutante dde2-2, die zwar 13-Lipoxygenase-Produkte aber keine Jasmonate bilden kann. Dies bedeutet, dass die Jasmonate und nicht andere 13-Lipoxygenase-Produkte für die Seneszenz-ähnlichen Symptome unter diesen Bedingungen verantwortlich sind. Dabei stellt die Sorbitol-induzierte Seneszenz einen Stress-Prozess dar, der sich in vielen Punkten von der natürlichen Seneszenz unterscheidet aber große Ähnlichkeiten zur Seneszenz-Induktion nach exogener Jasmonat-Applikation aufweist. Lipoxygenase 2 ist also durch die Bereitstellung von Oxylipinen weniger in Entwicklungs- als vielmehr in Stress-Prozesse involviert. / Jasmonic acid and related oxylipins have been controversely discussed to be involved in regulating the initiation and progression of leaf senescence. Present studies mostly focus on exogenous application of jasmonates or measurements of endogenous levels. To this end we analysed profiles of free and esterified oxylipins during natural senescence and upon induction of senescence-like phenotypes by dark treatment and flotation on sorbitol in Arabidopsis thaliana. Jasmonic acid and free 12-oxo-phytodienoic acid increased during all three processes with the strongest increase of jasmonic acid after dark treatment. Arabidopside content did only increase considerably in response to sorbitol treatment. Mono- and digalactosyldiacylglycerols decreased during these treatments and aging. Lipoxygenase 2 RNAi plants were generated which produce basal levels of jasmonic acid and 12-oxo-phytodienoic acid but do not exhibit accumulation during natural senescence or upon stress treatment. Chlorophyll loss, degradation of membrane lipids as well as expression of senescence markergenes during aging and upon dark incubation was not altered suggesting that these oxylipins are less or not involved in regulating these processes in comparison to other endogenous factors. From these observations it could be further concluded, that jasmonate accumulation in those processes is rather a result of altered lipid metabolism than a promoter of senescence. In contrast, lipoxygenase 2 RNAi lines and the allene oxid synthase deficient mutant dde2-2 were less sensitive to sorbitol treatment than the wild type. This indicates that jasmonates but not other 13-lipoxygenase products are responsible for senescence-like symptoms. Furthermore sorbitol-induced senescence represents a stress-related process, which is similar to senescence processes induced by exogenous jasmonate application but rather than to natural developmental processes. To this end lipoxygenase 2 is rather involved in stress-related processes by providing oxylipins than in developmental functions.
10

Biophysikalische Analyse und Rekonstitution des schnellen ABA-Signaltransduktionsweges aus Arabidopsis thaliana / Biophysical analysis and reconstitution of the fast ABA-signal transduction pathway in Arabidopsis thaliana

Scherzer, Sönke January 2012 (has links) (PDF)
In dieser Arbeit sollte zunächst die Frage geklärt werden, ob es sich bei SLAC1 um den S-typ Anionenkanal handelt, oder ob SLAC1 nur ein essentieller Bestandteil des Anionenkanals ist. Zur funktionellen Charakterisierung des per se inaktiven SLAC1 Proteins, wurde mit der Suche nach SLAC1-aktivierenden Interaktionspartnern begonnen. Zu diesem Zweck bediente man sich der Methode der bimolekularen Fluoreszenz Komplementation (BiFC) im heterologen Expressionssystem der Xenopus Oozyten. Da bereits die Abhängigkeit der Anionenströme in Schließzellen von De- und Phosphorylierungsereignissen bekannt war, galt Ca2+-abhängigen Kinasen der CPK Familie, ABA-aktivierten Kinasen der SnRK Familie und Phosphatasen des PP2C Typs eine besondere Aufmerksamkeit. Mitglieder dieser Familien wurden bereits mit der Regulation des Stomaschlusses in Verbindung gebracht. Bei diesen Experimenten zeigte sich, dass SnRK2.6 (OST1) und mehrere CPKs deutlich mit SLAC1 physikalisch interagierten. Als Folge dieser Interaktion in Oozyten konnten schließlich nach Koexpression von SLAC1 zusammen mit den interagierenden Kinasen typische S-Typ Anionenströme detektiert werden, wie man sie aus Patch-Clamp Experimenten an isolierten Schließzellprotoplasten kannte. Hierbei bewirkten die Kinasen OST1 und CPK23 die größte Anionenkanalaktivierung. Dieses Ergebnis wird durch die BIFC-Experimente gestützt, da OST1 und CPK23 die stärkste Interaktion zu SLAC1 zeigten. Die elektrophysiologische Charakterisierung der SLAC1-Ströme im heterologen Expressionssystem der Xenopus Oozyten in Kombination mit in vivo Patch-Clamp Untersuchungen wies SLAC1 eindeutig als den lange gesuchten S-Typ Anionenkanal in Arabidopsis Schließzellen aus. Somit ist die direkte S-Typ Anionenkanalaktivierung durch OST1 auf dem Kalzium- unabhängigen und durch CPKs auf dem Ca2+-abhängigen ABA-Signaltransduktionsweg gelungen. Bei der Spezifizierung der einzelnen Kalzium-Abhängigkeiten dieser Kinasen in Oozyten und in in vitro Kinase Assays konnten weiterhin unterschiedliche Affinitäten der CPKs zu Kalzium festgestellt werden. So vermittelten die schwach Kalzium-abhängigen CPK6 und CPK23 bereits ohne einen Anstieg der zytosolischen Kalziumkonzentratiom über das Ruheniveau hinaus schon die Anionenkanalaktivierung. Die stark Kalzium-abhängigen CPK3 und CPK21 hingegen, werden erst aktiv wenn die ABA vermittelte Signaltransduktion zu einem Anstieg der Kalziumkonzentration führt. Da somit die Kinasen OST1, CPK6 und CPK23 ohne dieses Kalziumsignal aktiv sind, benötigen diese einen übergeordneten Regulationsmechanismus. In den BIFC-Experimenten konnte eine deutliche Interaktion der Phosphatasen ABI1 und 2 zu den SLAC1 aktivierenden Kinasen beobachtet werden. Dass diese Interaktion zu einem Ausbleiben der Anionenkanalaktivierung führt, wurde in TEVC-Messungen gezeigt. Mit diesen Erkenntnissen um die ABA-Signaltransduktionskette in Schließzellen konnten in in vitro Kinase Experimenten ihre einzelnen Glieder zusammengesetzt und der ABA-vermittelte Stomaschluss nachvollzogen werden. In dieser Arbeit zeigte sich, dass, das unter Wasserstress-Bedingungen synthetisierte Phytohormon, ABA von Rezeptoren der RCAR/PYR/PYL-Familie percepiert wird. Anschließend bindet die Phosphatase ABI1 an den ABA-RCAR1 Komplex. In ihrer freien Form inhibiert die Phosphatase ABI1 die Kinasen OST1, CPK3, 6, 21 und CPK23 durch Dephosphorylierung. Nach Bindung von ABI1 an RCAR1 sind diese Kinasen von dem inhibierenden ABI1 entlassen. Die Kinasen OST1, CPK6 und CPK23 stellen ihre Aktivität durch Autophosphorylierung wieder her. Die stark Ca2+-abhängigen Kinasen CPK3 und 21 benötigt hierzu noch einen ABA induzierten Ca2+-Anstieg im Zytoplasma. Diese Kinasen phosphorylieren anschließend SLAC1 am N-Terminus. Diese Phosphorylierung bewirkt die Aktivierung von SLAC1 woraufhin Anionen aus der Schließzelle entlassen werden. Das Fehlen dieser negativen Ladungen führt zur Depolarisation der Membran woraufhin der auswärtsgleichrichtende Kaliumkanal GORK aktiviert und K+ aus der Schließzelle entlässt. Der Verlust an Osmolyten bewirkt einen osmotisch getriebenen Wasserausstrom und das Stoma schließt sich. / This work should clarify whether SLAC1 is the anion channel itself, or a regulatory component of S-type anion channels. To answer this question we searched for activating interaction partners of SLAC1. For this purpose the bimolecular fluorescence complementation (BiFC) technique was used following heterologous expression in Xenopus oocytes. Since anion currents of guard cells have been shown to be associated with phosphorylation events we focused on calcium dependent kinases (CPKs), ABA-activated SnRK kinases and PP2C phosphatases. Members of these families were already known to be involved in ABA-dependent stomatal closure. BIFC experiments revealed that SnRK2.6 (OST1) and several CPKs physically interact with SLAC1 in oocytes. Upon coexpression of SLAC1 with these interacting kinases in Xenopus oocytes, SLAC1-related anion currents appeared similar to those observed in guard cells. Strongest anion channel activation was detected by coexpression of SLAC1 and OST1 or CPK23. These findings are supported by BIFC experiments detecting OST1 and CPK23 also as strongest interaction partners of SLAC1. The electrophysiological characterization of SLAC1 currents in Xenopus oocytes, in combination with in vivo patch clamp studies demonstrated that SLAC1 is the major component of S-type anion currents in Arabidopsis guard cells. Furthermore we could show that OST1 mediates direct S-type anion channel activation in a calcium-independent manner whereas CPKs are positive regulators of SLAC1 in the calcium-dependent branch of the ABA signaling pathway. Moreover in vitro kinase assays and TEVC measurements in oocytes revealed that there are two groups of SLAC1 activating CPK kinases with distinct Ca2+ affinities: i) the weak calcium-dependent CPK6 and CPK23 mediate anion channel activation even at the low resting calcium concentrations while ii) the high affinity kinases CPK3 and CPK21 are only active in response to an increase in cytosolic calcium concentration. Since OST1, CPK6 and CPK23 are active even without a preceding calcium signal, a master regulator is necessary which keeps those kinases inactive in the absence of ABA. BIFC experiments revealed a strong interaction of phosphatases ABI1 and 2 towards the SLAC1 activating kinases. Interestingly the integration of ABI1 into the SLAC1/kinase complex prevented SLAC1 activation in oocytes. Taken together our findings allowed us to reconstitute the ABA signaling pathway from the perception of ABA to the activation of S-type anion channel SLAC1, in turn leading to stomatal closure. Under water stress conditions the phytohormone ABA is synthesized and sensed by its receptors (RCAR/PYR/PYL). This allows binding of ABI1 to the active ABA-RCAR1 complex. In its free form ABI1 by dephosphorylation inhibits the kinases OST1, CPK3, 6, 21 and CPK23. After binding of ABI1 to RCAR1, however, these kinases are released from the inhibitory effect of ABI1. The kinases OST1, CPK23 and CPK6 become active by autophosphorylation. The strong Ca2+-dependent kinases CPK3 and CPK21 in addition need an ABA-induced rise in cytosolic calcium concentration to restore their activity. These active kinases phosphorylate SLAC1 at its N-terminus leading to the activation of SLAC1. The release of anions from guard cells depolarizes the guard cell membrane potential whereupon the outward rectifying potassium channel GORK is gated open. Finally the loss of osmolytes causes an osmotic driven water loss, the guard cells shrink and thus the stoma closes.

Page generated in 0.4322 seconds