Spelling suggestions: "subject:"derham cohomology"" "subject:"dereham cohomology""
1 |
UPPER BOUNDS ON THE SPLITTING OF THE EIGENVALUESHo, Phuoc L. 01 January 2010 (has links)
We establish the upper bounds for the difference between the first two eigenvalues of the relative and absolute eigenvalue problems. Relative and absolute boundary conditions are generalization of Dirichlet and Neumann boundary conditions on functions to differential forms respectively. The domains are taken to be a family of symmetric regions in Rn consisting of two cavities joined by a straight thin tube. Our operators are Hodge Laplacian operators acting on k-forms given by the formula Δ(k) = dδ+δd, where d and δ are the exterior derivatives and the codifferentials respectively. A result has been established on Dirichlet case (0-forms) by Brown, Hislop, and Martinez [2]. We use the same techniques to generalize the results on exponential decay of eigenforms, singular perturbation on domains [1], and matrix representation of the Hodge Laplacian restricted to a suitable subspace [2]. From matrix representation, we are able to find exponentially small upper bounds for the difference between the first two eigenvalues.
|
2 |
Medidas transversas, correntes e sistemas dinâmicos / Transverse measures, currents and dynamical systemsParejas, Jorge Luis Crisostomo 25 February 2013 (has links)
Neste trabalho, fazemos um estudo das correntes e das medidas transversas invariantes por holonomia, e mostraremos o resultado de D. Sullivan [23] sobre a correspondência biunívoca entre estes dois objetos. Em particular mostraremos um resultado conhecido de J. Plante [17] sobre a existência de medidas transversas invariantes sob a hipótese de crescimento sub-exponencial. Apresentamos também, o resultado devido a Ruelle-Sullivan [19] de que a medida de máxima entropia de um difeomorfismo topologicamente mixing pode-se expressar como o produto de duas medidas transversas invariantes para as folheações estáveis e instáveis. Por último, mostramos que os difeomorfismos de Anosov topologicamente mixing, que preservam a orientação das folhas estáveis e folhas instáveis induzem elementos da cohomologia de DeRham / In this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
|
3 |
Medidas transversas, correntes e sistemas dinâmicos / Transverse measures, currents and dynamical systemsJorge Luis Crisostomo Parejas 25 February 2013 (has links)
Neste trabalho, fazemos um estudo das correntes e das medidas transversas invariantes por holonomia, e mostraremos o resultado de D. Sullivan [23] sobre a correspondência biunívoca entre estes dois objetos. Em particular mostraremos um resultado conhecido de J. Plante [17] sobre a existência de medidas transversas invariantes sob a hipótese de crescimento sub-exponencial. Apresentamos também, o resultado devido a Ruelle-Sullivan [19] de que a medida de máxima entropia de um difeomorfismo topologicamente mixing pode-se expressar como o produto de duas medidas transversas invariantes para as folheações estáveis e instáveis. Por último, mostramos que os difeomorfismos de Anosov topologicamente mixing, que preservam a orientação das folhas estáveis e folhas instáveis induzem elementos da cohomologia de DeRham / In this work, we make a study of currents and holonomy invariant transverse measure, and we will show the result of D. Sullivan [23] about the biunivocal correspondence between these two objects. In particular we show a known result of J. Plante [17] about the existence of invariant transverse measures under the hypothesis of sub-exponential growth. Also we will present, the result due to Ruelle-Sullivan [19] that the maximum entropy measure of a diffeomorphism topologically mixing can be expressed as the product of two invariant transverse measures for stable and unstable foliations. Finally, we show that the Anosov diffeomorphisms topologically mixing, which preserve the orientation of the leaves stable and unstable induce elements DeRham cohomology
|
Page generated in 0.052 seconds