• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Syntheses, characterisation and applications of ionic liquids to recover materials from WEEE

Faivre, Romain January 2010 (has links)
The recycling of materials from waste electrical and electronic equipment (WEEE) is of great concern today, as increasing public awareness and the implementation of recent legislations have created a situation where industries need to 1) comply with the environmental regulations and 2) fulfil producers’ responsibility initiatives. In this context, the work described in this thesis investigates the applications of new leaching solvents, the ionic liquids (ILs), to recycle two materials, copper and decabromodiphenylether (DBDE), which are common in WEEE. A total of 18 ILs, methylimidazolium (MIM) and methylpyridinium (MPy) based, were prepared using a microwave-assisted method. These ILs were selected to allow characterisation of performance with respect to three parameters: hydrophobicity of the cation, polarity of a terminal functional group in the cation side chain, and the type of aromatic ring, in order to identify their effects on the solubility and extraction processes. All ILs were successfully characterised by IR spectroscopy, mass spectrometry and NMR. Hydrophobicity was measured by HPLC, and the retention factors compared to logP values predicted from Molinspiration. High correlation (>88%) was observed, which indicated that the predicted logP values were representative of the real hydrophobicity of the cation. Copper metal was not significantly dissolved in any of the ILs, and performance was therefore assessed with the dissolution of CuO. The dissolution tests were conducted at 70°C for ten minutes and the resultant solutions analysed for Cu by using atomic absorption spectroscopy. A short side chain and the presence of a strongly polarised functional group at the terminal position were required to achieve maximum dissolution. Furthermore, the short chain methylimidazolium system was better than methylpyridinium for dissolving CuO. Consequently, 1-(2-cyanoethyl)-1-methylimidazloium bromide was found to be the best solvent and dissolved 75.5 mg of Cu in one g of IL. High impact polystyrene (HIPS), containing 4.4% of DBDE, was prepared in order to test the extraction abilities of various non-substituted ILs. The extraction of DBDE from the polymer was conducted at 90°C for 2 h 45 min. The results indicated that high hydrophobicity was required to achieve the maximum extraction of DBDE, however, the percentage extraction remained very low (<10%). The low extraction was attributed to the fact that only the DBDE present on the outer surface of the polymer was extracted during the process. In spite of being more hydrophobic, MPy-based systems did not dissolve as much as MIM-based systems because they were more viscous. The high viscosity value actually hindered the diffusion process and ultimately reduced the extraction of DBDE. The effects of different factors on the extraction process were evaluated and the maximum extraction was achieved by using 1-octyl-3-methylimidazolium bromide at 110 °C. The results described in this thesis have identified and quantified the link between the structures of the ILs and extraction efficiencies in relation to their potential use for recovery of CuO and DBDE from WEEE. The recommendations for future work have also been identified. The results obtained in this work, however, have contributed to increase the knowledge about the properties of ILs and can be used in future research to design a large scale recycling process.
2

Occupational exposure to brominated flame retardants : With emphasis on polybrominated diphenyl ethers

Thuresson, Kaj January 2004 (has links)
<p>Brominated flame retardants (BFRs) are a diverse group of chemicals, which are used to slow down or inhibit the development of fires. BFRs are incorporated into a wide range of consumer products that are considered as potential fire hazards, such as TV-sets, household appliances, computers, and textiles. The production and use of BFRs is extensive and consists of mainly tetrabromobisphenol A (TBBPA), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecan (HBCD). BFRs in general, but in particular the PBDEs, have led to both scientific and public concern since they have been found to bioaccumulate in humans and wildlife. The general population is targeted by the PBDEs due to their applications and via the food web. Occupational exposure occurs not only during direct handling of BFRs, but also during handling, repair and dismantling of flame retarded goods.</p><p>This thesis is aimed to assess occupational exposure to BFRs. It is mainly focused PBDEs and especially the PBDEs with high bromine content, such as decabromodiphenyl ether (BDE-209). The work has been accomplished by analysis of BFRs in indoor air at industries handling BFRs or flame retarded goods, and by analysis of blood drawn from workers with potential exposure to BFRs. A referent group, abattoir workers with no occupational exposure to PBDEs, was also investigated. Data from these cross-sectional investigations and from serum sampling during vacation in PBDE-exposed workers have been used for calculation of apparent halflives of hepta- to decaBDE in serum.</p><p>The results clearly show that the workers were exposed to PBDEs when handling PBDE containing products or goods. The serum PBDE levels in computer technicians were found to correlate to the estimated cumulative work hours with computers. Exceptionally high concentrations of BDE-209, almost up to 300 pmol/g lipid weight (l.w.) were observed in serum from rubber workers manufacturing or handling rubber compound that was flame retarded with a technical mixture of decabromodiphenyl ether (DecaBDE). Elevated concentrations of PBDEs with eight or nine bromine substituents were also observed. In an electronics dismantling plant, where elevated levels of PBDEs previously had been observed, reduced serum levels of some, but not all PBDE congeners were observed after industrial hygiene improvements. Notably, it was observed that the BDE-209 concentrations in referents with no occupational exposure were similar to the concentrations of 2,2’,4,4’- tetrabromodiphenyl ether (BDE-47), often referred to as the most abundant PBDE congener in humans and wildlife. Additionally, PBDEs with high bromine content were found to have a fast rate of elimination or transformation in humans, based on serum analysis. BDE-209 had an apparent half-life in serum of only 15 days.</p><p>The possibility of quantifying BFRs, such as PBDEs, in human serum at low levels of detection has been achieved by reducing the contamination of the samples and procedural blanks. Major efforts have been done to develop routines and clean up methodology to enable an almost contamination-free environment at the laboratory. The use of a clean room has decreased PBDE levels in the blanks to acceptable limits. The modifications of the original analytical method have made it possible to quantify almost all PBDE congeners of interest in one GC/MS run.</p><p>Occupational and general background exposure of BFRs to humans will continue as long as these chemicals are a part of our daily life and present as environmental contaminants. The present scientific knowledge of the potential health risks of these BFRs still needs to be further developed. It should be stressed that health effects to PBDEs have not been assessed in this work. It is the author's wish that this thesis should add another piece of knowledge to the puzzle of BFRs and BFR exposure to humans and that these data will be used in future risk assessments of PBDEs in particular.</p>
3

PBDEs in the Environment : Time trends, bioaccumulation and the identification of their successor, decabromodiphenyl ethane

Kierkegaard, Amelie January 2007 (has links)
<p>Polybrominated diphenyl ethers (PBDEs) are important chemical flame retardants, but also environmental pollutants. Their bromine substitution lends them a different bioaccumulation behaviour than the better studied organochlorines.</p><p>The contamination of a Swedish lake with lower brominated BDEs was assessed by a retrospective study of pike. The concentrations of tetra- to hexaBDEs increased exponentially up to the mid-1980s and then decreased slowly, possibly reflecting the voluntary reduction in production/usage of the chemicals. Methoxylated PBDEs were found to be present in similar concentrations to the PBDEs, but originated from different sources. The large size of the bromine atom was believed to result in negligible absorption of higher brominated BDEs in wildlife, thus explaining the low levels observed in fish despite high levels in e.g. sediment. However, it was shown that the fully brominated BDE, BDE209, was absorbed to a small extent via the diet. Once absorbed, it was reductively debrominated to lower brominated BDE congeners. Debromination was also observed in dairy cows exposed to higher brominated BDEs in their natural diet. Moreover, the molecular size restricted the transfer of higher brominated BDEs to milk. In contrast to PCBs and lower brominated BDEs, there was no equilibrium between adipose tissues and milk fat, and with increasing bromine substitution a progressively smaller fraction of the ingested PBDEs was transferred to the milk.</p><p>This thesis highlights differences in uptake, metabolism and excretion for PBDEs compared to the well characterized organochlorines. A knowledge that is useful for risk assessments given the ongoing use of these compounds. Furthermore, a representative of the next generation brominated flame retardants, decabromodiphenyl ethane, a replacement for the BDE209 technical product, was identified for the first time in the environment.</p>
4

Occupational exposure to brominated flame retardants : With emphasis on polybrominated diphenyl ethers

Thuresson, Kaj January 2004 (has links)
Brominated flame retardants (BFRs) are a diverse group of chemicals, which are used to slow down or inhibit the development of fires. BFRs are incorporated into a wide range of consumer products that are considered as potential fire hazards, such as TV-sets, household appliances, computers, and textiles. The production and use of BFRs is extensive and consists of mainly tetrabromobisphenol A (TBBPA), polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecan (HBCD). BFRs in general, but in particular the PBDEs, have led to both scientific and public concern since they have been found to bioaccumulate in humans and wildlife. The general population is targeted by the PBDEs due to their applications and via the food web. Occupational exposure occurs not only during direct handling of BFRs, but also during handling, repair and dismantling of flame retarded goods. This thesis is aimed to assess occupational exposure to BFRs. It is mainly focused PBDEs and especially the PBDEs with high bromine content, such as decabromodiphenyl ether (BDE-209). The work has been accomplished by analysis of BFRs in indoor air at industries handling BFRs or flame retarded goods, and by analysis of blood drawn from workers with potential exposure to BFRs. A referent group, abattoir workers with no occupational exposure to PBDEs, was also investigated. Data from these cross-sectional investigations and from serum sampling during vacation in PBDE-exposed workers have been used for calculation of apparent halflives of hepta- to decaBDE in serum. The results clearly show that the workers were exposed to PBDEs when handling PBDE containing products or goods. The serum PBDE levels in computer technicians were found to correlate to the estimated cumulative work hours with computers. Exceptionally high concentrations of BDE-209, almost up to 300 pmol/g lipid weight (l.w.) were observed in serum from rubber workers manufacturing or handling rubber compound that was flame retarded with a technical mixture of decabromodiphenyl ether (DecaBDE). Elevated concentrations of PBDEs with eight or nine bromine substituents were also observed. In an electronics dismantling plant, where elevated levels of PBDEs previously had been observed, reduced serum levels of some, but not all PBDE congeners were observed after industrial hygiene improvements. Notably, it was observed that the BDE-209 concentrations in referents with no occupational exposure were similar to the concentrations of 2,2’,4,4’- tetrabromodiphenyl ether (BDE-47), often referred to as the most abundant PBDE congener in humans and wildlife. Additionally, PBDEs with high bromine content were found to have a fast rate of elimination or transformation in humans, based on serum analysis. BDE-209 had an apparent half-life in serum of only 15 days. The possibility of quantifying BFRs, such as PBDEs, in human serum at low levels of detection has been achieved by reducing the contamination of the samples and procedural blanks. Major efforts have been done to develop routines and clean up methodology to enable an almost contamination-free environment at the laboratory. The use of a clean room has decreased PBDE levels in the blanks to acceptable limits. The modifications of the original analytical method have made it possible to quantify almost all PBDE congeners of interest in one GC/MS run. Occupational and general background exposure of BFRs to humans will continue as long as these chemicals are a part of our daily life and present as environmental contaminants. The present scientific knowledge of the potential health risks of these BFRs still needs to be further developed. It should be stressed that health effects to PBDEs have not been assessed in this work. It is the author's wish that this thesis should add another piece of knowledge to the puzzle of BFRs and BFR exposure to humans and that these data will be used in future risk assessments of PBDEs in particular.
5

PBDEs in the Environment : Time trends, bioaccumulation and the identification of their successor, decabromodiphenyl ethane

Kierkegaard, Amelie January 2007 (has links)
Polybrominated diphenyl ethers (PBDEs) are important chemical flame retardants, but also environmental pollutants. Their bromine substitution lends them a different bioaccumulation behaviour than the better studied organochlorines. The contamination of a Swedish lake with lower brominated BDEs was assessed by a retrospective study of pike. The concentrations of tetra- to hexaBDEs increased exponentially up to the mid-1980s and then decreased slowly, possibly reflecting the voluntary reduction in production/usage of the chemicals. Methoxylated PBDEs were found to be present in similar concentrations to the PBDEs, but originated from different sources. The large size of the bromine atom was believed to result in negligible absorption of higher brominated BDEs in wildlife, thus explaining the low levels observed in fish despite high levels in e.g. sediment. However, it was shown that the fully brominated BDE, BDE209, was absorbed to a small extent via the diet. Once absorbed, it was reductively debrominated to lower brominated BDE congeners. Debromination was also observed in dairy cows exposed to higher brominated BDEs in their natural diet. Moreover, the molecular size restricted the transfer of higher brominated BDEs to milk. In contrast to PCBs and lower brominated BDEs, there was no equilibrium between adipose tissues and milk fat, and with increasing bromine substitution a progressively smaller fraction of the ingested PBDEs was transferred to the milk. This thesis highlights differences in uptake, metabolism and excretion for PBDEs compared to the well characterized organochlorines. A knowledge that is useful for risk assessments given the ongoing use of these compounds. Furthermore, a representative of the next generation brominated flame retardants, decabromodiphenyl ethane, a replacement for the BDE209 technical product, was identified for the first time in the environment.
6

Environmental occurrence and behaviour of the flame retardant decabromodiphenyl ethane

Ricklund, Niklas January 2010 (has links)
The environmental occurrence and behaviour of the brominated flame retardant (BFR) decabromodiphenyl ethane (dbdpe) has only been studied to a limited extent. It is structurally similar to decabromodiphenyl ether (decaBDE), which makes it conceivable that dbdpe may also become an environmental contaminant of concern. A method for environmental analysis and comparative assessments of dbdpe and decaBDE was developed. Both BFRs were studied in: a mass balance of the Henriksdal WWTP in Stockholm (Paper I); an international survey of sewage sludge (Paper II); sediment along a transect from Henriksdal WWTP to the outer archipelago of Stockholm and from isolated Swedish lakes (Paper III); and a benthic food web from the Scheldt estuary (Paper IV). Dbdpe was found in sludge from every country surveyed, indicating that it may be a worldwide concern. The WWTP mass balance showed that virtually all of the BFRs were transferred from wastewater to sludge. A small fraction was emitted via the effluent, confirming emissions to the aquatic environment. In the marine sediment, the BFR levels close to the WWTP outfall were high. They decreased along the transect to low levels in the outer archipelago. The study of lake sediment showed a widespread presence of dbdpe in the Swedish environment and provided evidence that it originates from long range atmospheric transport. In the food web, dbdpe did bioaccumulate to a small extent which was similar to decaBDE. The transfer of the BFRs from sediment to benthic invertebrates was low, while transfer from prey to predator was higher. Biodilution was observed rather than biomagnification. This work suggests that the persistence, the susceptibility to long range atmospheric transport, and the potential for bioaccumulation are similar for dbdpe and the regulated decaBDE that it is replacing. Thus, there is a risk that a problematic environmental pollutant is being replaced with a chemical that is equally problematic. / At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 3: Submitted. Paper 4: Manuscript.

Page generated in 0.0796 seconds