1 |
Design, Testing and Modeling of the Direct Reactor Auxiliary Cooling System for FHRsLu, Qiuping 01 September 2016 (has links)
No description available.
|
2 |
Assessment of passive decay heat removal in the General Atomics Modular Helium ReactorCocheme, Francois Guilhem 17 February 2005 (has links)
The purpose of this report is to present the results of the study and analysis of loss-of-coolant and loss-of-flow simulations performed on the Modular Helium Reactor developed by General Atomics using the thermal-hydraulics code RELAP5-3D/ATHENA. The MHR is a high temperature gas cooled reactor. It is a prismatic core concept for New Generation Nuclear Plant (NGNP). Very few reactors of that kind have been designed in the past. Furthermore, the MHR is supposed to be a highly passively safe concept. So there are high needs for numerical simulations in order to confirm the design. The project is dedicated to the assessment of the passive decay heat capabilities of the reactor under abnormal transient conditions. To comply with the requirements of the NGNP, fuel and structural temperatures must be kept under design safety limits under any circumstances. During the project, the MHR has been investigated: first under steady-state conditions and then under transient settings. The project confirms that satisfying passive decay heat removal by means of natural heat transfer mechanisms (convection, conduction and radiation) occurs.
|
3 |
Assessment of passive decay heat removal in the General Atomics Modular Helium ReactorCocheme, Francois Guilhem 17 February 2005 (has links)
The purpose of this report is to present the results of the study and analysis of loss-of-coolant and loss-of-flow simulations performed on the Modular Helium Reactor developed by General Atomics using the thermal-hydraulics code RELAP5-3D/ATHENA. The MHR is a high temperature gas cooled reactor. It is a prismatic core concept for New Generation Nuclear Plant (NGNP). Very few reactors of that kind have been designed in the past. Furthermore, the MHR is supposed to be a highly passively safe concept. So there are high needs for numerical simulations in order to confirm the design. The project is dedicated to the assessment of the passive decay heat capabilities of the reactor under abnormal transient conditions. To comply with the requirements of the NGNP, fuel and structural temperatures must be kept under design safety limits under any circumstances. During the project, the MHR has been investigated: first under steady-state conditions and then under transient settings. The project confirms that satisfying passive decay heat removal by means of natural heat transfer mechanisms (convection, conduction and radiation) occurs.
|
4 |
Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven SystemsCarlsson, Johan January 2003 (has links)
This thesis is devoted to the investigation of passivesafety and inherent features of subcritical nucleartransmutation systems - accelerator-driven systems. The generalobjective of this research has been to improve the safetyperformance and avoid elevated coolant temperatures inworst-case scenarios like unprotected loss-of-ow accidents,loss-of-heat-sink accidents, and a combination of both theseaccident initiators. The specific topics covered are emergencydecay heat removal by reactor vessel auxiliary cooling systems,beam shut-off by a melt-rupture disc, safety aspects fromlocating heat-exchangers in the riser of a pool-type reactorsystem, and reduction of pressure resistance in the primarycircuit by employing bypass routes. The initial part of the research was focused on reactorvessel auxiliary cooling systems. It was shown that an 80 MWthPb/Bi-cooled accelerator-driven system of 8 m height and 6 mdiameter vessel can be well cooled in the case of loss-of-owaccidents in which the accelerator proton beam is not switchedoff. After a loss-of-heat-sink accident the proton beam has tobe interrupted within 40 minutes in order to avoid fast creepof the vessel. If a melt-rupture disc is included in the wallof the beam pipe, which breaks at 150 K above the normal coreoutlet temperature, the grace period until the beam has to beshut off is increased to 6 hours. For the same vessel geometry,but an operating power of 250 MWth the structural materials canstill avoid fast creep in case the proton beam is shut offimmediately. If beam shut-off is delayed, additional coolingmethods are needed to increase the heat removal. Investigationswere made on the filling of the gap between the guard and thereactor vessel with liquid metal coolant and using water spraycooling on the guard vessel surface. The second part of the thesis presents examinationsregarding an accelerator-driven system also cooled with Pb/Bibut with heat-exchangers located in the risers of the reactorvessel. For a pool type design, this approach has advantages inthe case of heat-exchanger tube failures, particularly if wateris used as the secondary uid. This is because a leakage ofwater from the secondary circuit into the Pb/Bi-cooled primarycircuit leads to upward sweeping of steam bubbles, which wouldcollect in the gas plenum. In the case of heatexchangers in thedowncomer steam bubbles may be dragged into the ADS core andadd reactivity. Bypass routes are employed to increase the owspeed in loss-of-ow events for this design. It is shown thatthe 200 MWth accelerator-driven system with heat-exchangers inthe riser copes reasonably well with both a loss-of-ow accidentwith the beam on and an unprotected loss-of-heat-sink accident.For a total-loss-of-power (station blackout) and an immediatebeam-stop the core outlet temperature peaks at 680 K. After acombined loss-of-ow and loss-of-heat-sink accident the beamshould be shut off within 4 minutes to avoid exceeding the ASMElevel D of 977 K, and within 8 minutes to avoid fast creep.Assuming the same core inlet temperature, both the reactordesign with heat-exchanger in the risers and the downcomershave similar temperature evolutions after a total-loss-ofpoweraccident. A large accelerator-driven system of 800 MWth with a 17 mtall vessel may eventually become a standard size. For thishigher power ADS, the location of the heat-exchangers hasgreater impact on the natural convection capability. This isdue to that larger heatexchangers have more inuence on thedistance between the thermal centers during a lossof- owaccident. The design with heat-exchangers in the downcomers,the long-term vessel temperature peaks at 996 K during aloss-of-ow accident with the beam on. This does not pose athreat of creep rupture for the vessel. However, the locationof the heat-exchangers in the downcomers will probably requiresecondary coolant other than water, like for example oil (fortemperatures not higher than 673 K) or Pb/Bi coolant.
|
5 |
Inherent Safety Features and Passive Prevention Approaches for Pb/Bi-cooled Accelerator-Driven SystemsCarlsson, Johan January 2003 (has links)
<p>This thesis is devoted to the investigation of passivesafety and inherent features of subcritical nucleartransmutation systems - accelerator-driven systems. The generalobjective of this research has been to improve the safetyperformance and avoid elevated coolant temperatures inworst-case scenarios like unprotected loss-of-ow accidents,loss-of-heat-sink accidents, and a combination of both theseaccident initiators. The specific topics covered are emergencydecay heat removal by reactor vessel auxiliary cooling systems,beam shut-off by a melt-rupture disc, safety aspects fromlocating heat-exchangers in the riser of a pool-type reactorsystem, and reduction of pressure resistance in the primarycircuit by employing bypass routes.</p><p>The initial part of the research was focused on reactorvessel auxiliary cooling systems. It was shown that an 80 MWthPb/Bi-cooled accelerator-driven system of 8 m height and 6 mdiameter vessel can be well cooled in the case of loss-of-owaccidents in which the accelerator proton beam is not switchedoff. After a loss-of-heat-sink accident the proton beam has tobe interrupted within 40 minutes in order to avoid fast creepof the vessel. If a melt-rupture disc is included in the wallof the beam pipe, which breaks at 150 K above the normal coreoutlet temperature, the grace period until the beam has to beshut off is increased to 6 hours. For the same vessel geometry,but an operating power of 250 MWth the structural materials canstill avoid fast creep in case the proton beam is shut offimmediately. If beam shut-off is delayed, additional coolingmethods are needed to increase the heat removal. Investigationswere made on the filling of the gap between the guard and thereactor vessel with liquid metal coolant and using water spraycooling on the guard vessel surface.</p><p>The second part of the thesis presents examinationsregarding an accelerator-driven system also cooled with Pb/Bibut with heat-exchangers located in the risers of the reactorvessel. For a pool type design, this approach has advantages inthe case of heat-exchanger tube failures, particularly if wateris used as the secondary uid. This is because a leakage ofwater from the secondary circuit into the Pb/Bi-cooled primarycircuit leads to upward sweeping of steam bubbles, which wouldcollect in the gas plenum. In the case of heatexchangers in thedowncomer steam bubbles may be dragged into the ADS core andadd reactivity. Bypass routes are employed to increase the owspeed in loss-of-ow events for this design. It is shown thatthe 200 MWth accelerator-driven system with heat-exchangers inthe riser copes reasonably well with both a loss-of-ow accidentwith the beam on and an unprotected loss-of-heat-sink accident.For a total-loss-of-power (station blackout) and an immediatebeam-stop the core outlet temperature peaks at 680 K. After acombined loss-of-ow and loss-of-heat-sink accident the beamshould be shut off within 4 minutes to avoid exceeding the ASMElevel D of 977 K, and within 8 minutes to avoid fast creep.Assuming the same core inlet temperature, both the reactordesign with heat-exchanger in the risers and the downcomershave similar temperature evolutions after a total-loss-ofpoweraccident.</p><p>A large accelerator-driven system of 800 MWth with a 17 mtall vessel may eventually become a standard size. For thishigher power ADS, the location of the heat-exchangers hasgreater impact on the natural convection capability. This isdue to that larger heatexchangers have more inuence on thedistance between the thermal centers during a lossof- owaccident. The design with heat-exchangers in the downcomers,the long-term vessel temperature peaks at 996 K during aloss-of-ow accident with the beam on. This does not pose athreat of creep rupture for the vessel. However, the locationof the heat-exchangers in the downcomers will probably requiresecondary coolant other than water, like for example oil (fortemperatures not higher than 673 K) or Pb/Bi coolant.</p>
|
Page generated in 0.0738 seconds