Spelling suggestions: "subject:"codierung""
11 |
Advances in multi-user scheduling and turbo equalization for wireless MIMO systemsFuchs-Lautensack, Martin January 2009 (has links)
Zugl.: Ilmenau, Techn. Univ., Diss., 2009
|
12 |
Optimized belief propagation decoding for low delay applications in digital communications /Hehn, Thorsten. January 2009 (has links)
Zugl.: Erlangen, Nürnberg, University, Diss., 2009.
|
13 |
Efficient receiver methods for coded systems under channel uncertaintyFonseca dos Santos, André January 2010 (has links)
Zugl.: Dresden, Techn. Univ., Diss., 2010
|
14 |
Comparison of LDPC Block and LDPC Convolutional Codes based on their Decoding LatencyHassan, Najeeb ul, Lentmaier, Michael, Fettweis, Gerhard P. 11 February 2013 (has links) (PDF)
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window sizes is applied to continuously decode the input symbols. We show the required Eb/N0 to achieve a bit error rate of 10 -5 for the LDPC block and LDPC convolutional codes for the decoding latency of up to approximately 550 information bits. It has been observed that LDPC convolutional codes perform better than the block codes from which they are derived even at low latency. We demonstrate the trade off between complexity and performance in terms of lifting factor and window size for a fixed value of latency. Furthermore, the two codes are also compared in terms of their complexity as a function of Eb/N0. Convolutional codes with Viterbi decoding are also compared with the two above mentioned codes.
|
15 |
Comparison of LDPC Block and LDPC Convolutional Codes based on their Decoding LatencyHassan, Najeeb ul, Lentmaier, Michael, Fettweis, Gerhard P. January 2012 (has links)
We compare LDPC block and LDPC convolutional codes with respect to their decoding performance under low decoding latencies. Protograph based regular LDPC codes are considered with rather small lifting factors. LDPC block and convolutional codes are decoded using belief propagation. For LDPC convolutional codes, a sliding window decoder with different window sizes is applied to continuously decode the input symbols. We show the required Eb/N0 to achieve a bit error rate of 10 -5 for the LDPC block and LDPC convolutional codes for the decoding latency of up to approximately 550 information bits. It has been observed that LDPC convolutional codes perform better than the block codes from which they are derived even at low latency. We demonstrate the trade off between complexity and performance in terms of lifting factor and window size for a fixed value of latency. Furthermore, the two codes are also compared in terms of their complexity as a function of Eb/N0. Convolutional codes with Viterbi decoding are also compared with the two above mentioned codes.
|
16 |
Reduced Complexity Window Decoding Schedules for Coupled LDPC CodesHassan, Najeeb ul, Pusane, Ali E., Lentmaier, Michael, Fettweis, Gerhard P., Costello, Daniel J. 14 February 2013 (has links) (PDF)
Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing schedules are applied within the decoding window. An improvement based schedule is presented that easily adapts to different ensemble structures, window sizes, and channel parameters. Its combination with a serial (on-demand) schedule is also considered. Results from a computer search based schedule are shown for comparison.
|
17 |
Reduced Complexity Window Decoding Schedules for Coupled LDPC CodesHassan, Najeeb ul, Pusane, Ali E., Lentmaier, Michael, Fettweis, Gerhard P., Costello, Daniel J. January 2012 (has links)
Window decoding schedules are very attractive for message passing decoding of spatially coupled LDPC codes. They take advantage of the inherent convolutional code structure and allow continuous transmission with low decoding latency and complexity. In this paper we show that the decoding complexity can be further reduced if suitable message passing schedules are applied within the decoding window. An improvement based schedule is presented that easily adapts to different ensemble structures, window sizes, and channel parameters. Its combination with a serial (on-demand) schedule is also considered. Results from a computer search based schedule are shown for comparison.
|
Page generated in 0.036 seconds