• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation of decommissioned reactor pressure vessels of the nuclear power plant Greifswald

Viehrig, Hans-Werner, Altstadt, Eberhard, Houska, Mario, Mueller, Gudrun, Ulbricht, Andreas, Konheiser, Joerg, Valo, Matti 05 June 2018 (has links) (PDF)
The investigation of reactor pressure vessel (RPV) material from the decommissioned Greifswald nuclear power plant representing the first generation of Russian-type WWER-440/V-230 reactors offers the opportunity to evaluate the real toughness response. The Greifswald RPVs of 4 units represent different material conditions as follows: • Irradiated (Unit 4), • irradiated and recovery annealed (Units 2 and 3), and • irradiated, recovery annealed and re-irradiated (Unit1). The recovery annealing of the RPV was performed at a temperature of 475° for about 152 hours and included a region covering ±0.70 m above and below the core beltline welding seam. Material samples of a diameter of 119 mm called trepans were extracted from the RPV walls. The research program is focused on the characterisation of the RPV steels (base and weld metal) across the thickness of the RPV wall. This report presents test results measured on the trepans from the beltline welding seam No. SN0.1.4. and forged base metal ring No. 0.3.1. of the Units 1 2 and 4 RPVs. The key part of the testing is focussed on the determination of the reference temperature T0 of the Master Curve (MC) approach following the ASTM standard E1921 to determine the facture toughness, and how it degrades under neutron irradiation and is recovered by thermal annealing. Other than that the mentioned test results include Charpy-V and tensile test results. Following results have been determined: • The mitigation of the neutron embrittlement of the weld and base metal by recovery annealing could be confirmed. • KJc values of the weld metals generally followed the course of the MC though with a large scatter. • There was a large variation in the T0 values evaluated across the thickness of the multilayered welding seams. • The T0 measured on T-S oriented SE(B) specimens from different thickness locations of the welding seams strongly depended on the intrinsic structure along the crack front. • The reference temperature RT0 determined according to the “Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs - VERLIFE” and the fracture toughness lower bound curve based thereon are applicable on the investigated weld metals. • A strong scatter of the fracture toughness KJc values of the recovery annealed and re-irradiated and the irradiated base metal of Unit 1 and 4, respectively is observed with clearly more than 2% of the values below the MC for 2% fracture probability. The application of the multimodal MC-based approach was more suitable and described the temperature dependence of the KJc values in a satisfactory manner. • It was demonstrated that T0 evaluated according to the SINTAP MC extension represented the brittle fraction of the data sets and is therefore suitable for the nonhomogeneous base metal. • The efficiency of the large-scale thermal annealing of the Greifswald WWER 440/V230 Unit 1 and 2 RPVs could be confirmed.
2

Investigation of decommissioned reactor pressure vessels of the nuclear power plant Greifswald

Viehrig, Hans-Werner, Altstadt, Eberhard, Houska, Mario, Mueller, Gudrun, Ulbricht, Andreas, Konheiser, Joerg, Valo, Matti 05 June 2018 (has links)
The investigation of reactor pressure vessel (RPV) material from the decommissioned Greifswald nuclear power plant representing the first generation of Russian-type WWER-440/V-230 reactors offers the opportunity to evaluate the real toughness response. The Greifswald RPVs of 4 units represent different material conditions as follows: • Irradiated (Unit 4), • irradiated and recovery annealed (Units 2 and 3), and • irradiated, recovery annealed and re-irradiated (Unit1). The recovery annealing of the RPV was performed at a temperature of 475° for about 152 hours and included a region covering ±0.70 m above and below the core beltline welding seam. Material samples of a diameter of 119 mm called trepans were extracted from the RPV walls. The research program is focused on the characterisation of the RPV steels (base and weld metal) across the thickness of the RPV wall. This report presents test results measured on the trepans from the beltline welding seam No. SN0.1.4. and forged base metal ring No. 0.3.1. of the Units 1 2 and 4 RPVs. The key part of the testing is focussed on the determination of the reference temperature T0 of the Master Curve (MC) approach following the ASTM standard E1921 to determine the facture toughness, and how it degrades under neutron irradiation and is recovered by thermal annealing. Other than that the mentioned test results include Charpy-V and tensile test results. Following results have been determined: • The mitigation of the neutron embrittlement of the weld and base metal by recovery annealing could be confirmed. • KJc values of the weld metals generally followed the course of the MC though with a large scatter. • There was a large variation in the T0 values evaluated across the thickness of the multilayered welding seams. • The T0 measured on T-S oriented SE(B) specimens from different thickness locations of the welding seams strongly depended on the intrinsic structure along the crack front. • The reference temperature RT0 determined according to the “Unified Procedure for Lifetime Assessment of Components and Piping in WWER NPPs - VERLIFE” and the fracture toughness lower bound curve based thereon are applicable on the investigated weld metals. • A strong scatter of the fracture toughness KJc values of the recovery annealed and re-irradiated and the irradiated base metal of Unit 1 and 4, respectively is observed with clearly more than 2% of the values below the MC for 2% fracture probability. The application of the multimodal MC-based approach was more suitable and described the temperature dependence of the KJc values in a satisfactory manner. • It was demonstrated that T0 evaluated according to the SINTAP MC extension represented the brittle fraction of the data sets and is therefore suitable for the nonhomogeneous base metal. • The efficiency of the large-scale thermal annealing of the Greifswald WWER 440/V230 Unit 1 and 2 RPVs could be confirmed.

Page generated in 0.0778 seconds