• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Applications of One-Point Quadrature Domains

Leah Elaine McNabb (18387690) 16 April 2024 (has links)
<p dir="ltr">This thesis presents applications of one-point quadrature domains to encryption and decryption as well as a method for estimating average temperature. In addition, it investigates methods for finding explicit formulas for certain functions and introduces results regarding quadrature domains for harmonic functions and for double quadrature domains. We use properties of quadrature domains to encrypt and decrypt locations in two dimensions. Results by Bell, Gustafsson, and Sylvan are used to encrypt a planar location as a point in a quadrature domain. A decryption method using properties of quadrature domains is then presented to uncover the location. We further demonstrate how to use data from the decryption algorithm to find an explicit formula for the Schwarz function for a one-point area quadrature domain. Given a double quadrature domain, we show that the fixed points within the area and arc length quadrature identities must be the same, but that the orders at each point may differ between these identities. In the realm of harmonic functions, we demonstrate how to uncover a one-point quadrature identity for harmonic functions from the quadrature identity for a simply-connected one-point quadrature domain for holomorphic functions. We use this result to state theorems for the density of one-point quadrature domains for harmonic functions in the realm of smooth domains with $C^{\infty}$-smooth boundary. These density theorems then lead us to discuss applications of quadrature domains for harmonic functions to estimating average temperature. We end by illustrating examples of the encryption process and discussing the building blocks for future work.</p>

Page generated in 0.2239 seconds