• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Interpreting Faces with Neurally Inspired Generative Models

Susskind, Joshua Matthew 31 August 2011 (has links)
Becoming a face expert takes years of learning and development. Many research programs are devoted to studying face perception, particularly given its prerequisite role in social interaction, yet its fundamental neural operations are poorly understood. One reason is that there are many possible explanations for a change in facial appearance, such as lighting, expression, or identity. Despite general agreement that the brain extracts multiple layers of feature detectors arranged into hierarchies to interpret causes of sensory information, very little work has been done to develop computational models of these processes, especially for complex stimuli like faces. The studies presented in this thesis used nonlinear generative models developed within machine learning to solve several face perception problems. Applying a deep hierarchical neural network, we showed that it is possible to learn representations capable of perceiving facial actions, expressions, and identities, better than similar non-hierarchical architectures. We then demonstrated that a generative architecture can be used to interpret high-level neural activity by synthesizing images in a top-down pass. Using this approach we showed that deep layers of a network can be activated to generate faces corresponding to particular categories. To facilitate training models to learn rich and varied facial features, we introduced a new expression database with the largest number of labeled faces collected to date. We found that a model trained on these images learned to recognize expressions comparably to human observers. Next we considered models trained on pairs of images, making it possible to learn how faces change appearance to take on different expressions. Modeling higher-order associations between images allowed us to efficiently match images of the same type according to a learned pairwise similarity measure. These models performed well on several tasks, including matching expressions and identities, and demonstrated performance superior to competing models. In sum, these studies showed that neural networks that extract highly nonlinear features from images using architectures inspired by the brain can solve difficult face perception tasks with minimal guidance by human experts.
2

Interpreting Faces with Neurally Inspired Generative Models

Susskind, Joshua Matthew 31 August 2011 (has links)
Becoming a face expert takes years of learning and development. Many research programs are devoted to studying face perception, particularly given its prerequisite role in social interaction, yet its fundamental neural operations are poorly understood. One reason is that there are many possible explanations for a change in facial appearance, such as lighting, expression, or identity. Despite general agreement that the brain extracts multiple layers of feature detectors arranged into hierarchies to interpret causes of sensory information, very little work has been done to develop computational models of these processes, especially for complex stimuli like faces. The studies presented in this thesis used nonlinear generative models developed within machine learning to solve several face perception problems. Applying a deep hierarchical neural network, we showed that it is possible to learn representations capable of perceiving facial actions, expressions, and identities, better than similar non-hierarchical architectures. We then demonstrated that a generative architecture can be used to interpret high-level neural activity by synthesizing images in a top-down pass. Using this approach we showed that deep layers of a network can be activated to generate faces corresponding to particular categories. To facilitate training models to learn rich and varied facial features, we introduced a new expression database with the largest number of labeled faces collected to date. We found that a model trained on these images learned to recognize expressions comparably to human observers. Next we considered models trained on pairs of images, making it possible to learn how faces change appearance to take on different expressions. Modeling higher-order associations between images allowed us to efficiently match images of the same type according to a learned pairwise similarity measure. These models performed well on several tasks, including matching expressions and identities, and demonstrated performance superior to competing models. In sum, these studies showed that neural networks that extract highly nonlinear features from images using architectures inspired by the brain can solve difficult face perception tasks with minimal guidance by human experts.

Page generated in 0.0835 seconds