1 |
Long-Term Hydrologic Responses To Shrub Removal In A SW Texas Rangeland: Using Soil Chloride To Estimate Deep DrainageBarre, David Anthony 2009 August 1900 (has links)
The Carrizo-Wilcox aquifer is a valuable groundwater resource, situated in a semi-arid
landscape of Southwest Texas, where over-use by dependent farming practices has
lowered aquifer levels. In semi-arid regions, rates of groundwater recharge are
predominantly low due to high potential evapotranspiration rates; however, least
understood is the role that vegetation plays in soil-plant-water dynamics. Vegetation
management potentially plays a major role in countering the loss to recharge because
evapotranspiration (ET) varies with vegetation type and cover. The conversion from
shrubland to grassland likely reduces rooting depths and total plant cover. Subsequently,
deep drainage (percolation below the root zone) will likely increase and lead to
groundwater recharge, at least temporarily. The primary aims of the study were to
identify those biotic and abiotic factors facilitating deep drainage and to examine
differences in recharge for the years following clearing of natural shrub vegetation. Soil
chloride was examined to estimate long-term recharge rates, since its concentration in
the soil is influenced by the movement of water. Short-term soil moisture trends were
also monitored for any water movement deep in the soil profile in response to individual rain events. Rooting depths decreased following removal of vegetation; yet root biomass
unexpectedly increased due to successful grass establishment during the first five years
after treatment. Soil properties did not vary between treatments, indicating that the
majority of chloride differences seen were a consequence of vegetation change. Peak
and total soil chloride concentrations were expected to decrease and occur deeper in the
soil profile 15-30 years following the clearing of woody vegetation. Total chloride
decreased by up to 65% after 30 years and resulted in an estimated 14.9 mm/yr more
recharge compared to adjacent untreated controls. Evidence in this study suggest that
much of this chloride is leached during the first five years following treatment and that
more leaching occurs in especially wet periods. During the wet 2007 growing season,
soil moisture below the root zone increased by up to 17% after vegetation clearing. The
results of this study indicate that hydrologic changes following brush removal were
evident in this system and are likely to positively influence groundwater recharge in the
long-term.
|
2 |
Estabilização de encostas através de drenagem profunda: estudo de um caso de estabilização com túnel de drenagem. / Hillsides stabilization through deep drainage: study of a case of hillside stabilization with drainage tunnel.Bastos, Izabel Gomes 14 September 2006 (has links)
Esta dissertação apresenta o uso de drenagem profunda para estabilização de encostas, detalhando os sistemas existentes e suas aplicações. São relatados alguns casos de encostas estabilizadas através da drenagem profunda, tanto no Brasil como no exterior. Apresenta-se também um estudo de caso da obra de estabilização da encosta na qual está implantado o viaduto denominado VA-19, na Rodovia dos Imigrantes no Estado de São Paulo, em que foi utilizado túnel de drenagem como solução. É feita a análise da eficiência do túnel de drenagem para o rebaixamento do lençol freático e conseqüente estabilização da encosta. / This dissertation presents the use of deep drainage for slope stabilization, detailing the existent systems and their applications. Some cases of slope stabilized through deep drainage are reported. It is also presented a study of case of the slope stabilization which affected the overpass called VA-19, in the Imigrantes Highway, in the State of São Paulo which used drainage tunnel as a solution. The analysis of the drainage tunnel efficiency in the water table lowering and consequent slope stabilization.
|
3 |
Effect of Brush Vegetation on Deep Drainage Using Chloride Mass BalanceNavarrete Ganchozo, Ronald J. 2009 December 1900 (has links)
Groundwater use is of fundamental importance to meet rapidly expanding urban,
industrial, and agricultural water requirements, particularly in semiarid zones. To
quantify the current rate of groundwater recharge is thus a prerequisite for efficient and
sustainable groundwater resource management in these dry areas, where such resources
are often the key to economic development. Increased groundwater recharge has been
documented where native vegetation or forest/shrub land was converted to grassland or
pasture, or where the land was cleared for agricultural purposes. The basic argument for
increased recharge is that evapotranspiration, primarily interception and transpiration, is
higher in shrublands than grasslands.
Chloride mass balance (CMB) has been used to estimate ancient recharge, but
recharge from recent land-use change has also been documented, specifically where
vegetation has been altered and deep-rooted species replaced with shallow-rooted
grasses. Chloride concentrations are inversely related to recharge rates: low Clconcentrations
indicate high recharge rates as Cl- is leached from the system; high Cl concentrations indicate low recharge rates since Cl- accumulates as a result of
evapotranspiration.
The objectives were (1) to assess the hypothesis that removal of woody-shrub
vegetation and replacement with grasses increases deep drainage, (2) to quantify the
amount of deep drainage after land-use change, and (3) to provide science-based data for
a better understanding of changing land-use impacts on deep drainage. Eight soils from
five locations in the Central Rolling Red Plains near Abilene and Sweetwater were
sampled. Each location consisted of a pair of similar soils with contrasting vegetative
cover: shrubland and grassland. At each site three to five soil cores were taken as deep as
possible and samples were taken by horizon, but horizons were split when their
thickness exceeded 0.25 m.
Soil Cl- profiles under shrubland at three sites showed that virtually no water
escapes beyond the root zone. High Cl- concentrations and inventories reflect soil
moisture fluxes that approached 0 mm yr-1 with depth. Evapotranspiration may be
largely responsible for Cl- enrichment in those profiles. Surprisingly, soil moisture flux
past 200 cm under juniper woodlands was the highest with 2.6 mm yr-1.
Evapotranspirative Cl- enrichment in the upper 300 cm was not observed and may
suggest a different water uptake mechanism for this plant community.
Soil Cl- profiles showed increased recharge rates under grassland vegetation
ecosystem. Estimated deep drainage past 200 cm of 0.1 to 1.3 mm yr-1 was observed.
Low Cl- concentrations and inventories suggest a leaching environment that may be in
response to changes in land use/land cover.
|
4 |
Effects of Woody Vegetation Removal on Soil Water Dynamics in a South Texas ShrublandMattox, April Marie 16 December 2013 (has links)
Ecosystem changes from grassland to shrubland in the Rio Grande Plains are thought to have negative effects on the hydrology of the region. The increase in woody plants, known as woody encroachment, may alter the amount of water moving beyond the root zone of plants. Water moving beyond the root zone is referred to as deep drainage, and has potential to become aquifer recharge. A vegetation manipulation project was designed to understand the effects of woody vegetation removal on soil water dynamics in the recharge zone of the Carrizo-Wilcox aquifer of south Texas. The primary objective of the project was to determine the potential to increase groundwater recharge through woody vegetation removal. To understand the effects of vegetation removal on various soil textures we studied changes in soil water, rooting depth, and the role of water redistribution by woody vegetation. Woody vegetation was removed using common methods of cut-stump and roller chop across three soil types. Soil water contents and changes were measured using neutron moisture meter to a depth of 180 cm. Average rooting depth was determined across three soil types. Soil and stem water stable isotopes were used to understand soil water movement.
Rooting depth was determined to between 140 and 160 cm for all soil textures. Soil water content and changes were analyzed at three depth increments: 0-60, 60-120 and 120-180 cm. ANOVA analysis showed that there was no treatment response in average soil profile water in the sandy or sandy loam soils. There was a significant decrease in soil profile water for clay loam soil in response to roller chopping. Changes in soil profile water were the greatest in the sandy roller chopped soils. Below 120 cm, three months had significant differences in change in soil water in the sandy roller chop plot. During dry conditions, Honey mesquite shifts water use to deeper in the soil profile. In clay loam soils under dry conditions there is evidence of water being moved up from below 2 m soil depth to drier shallow soils. Roller chopping in sandy soils is the vegetation removal treatment and soil type most likely to result in water moving beyond the root zone. Although treatments had significant effects on soil moisture dynamics that interacted with soil type, we did not find support for deep drainage effects over the Carrizo-Wilcox aquifer from woody vegetation removal.
|
5 |
Estabilização de encostas através de drenagem profunda: estudo de um caso de estabilização com túnel de drenagem. / Hillsides stabilization through deep drainage: study of a case of hillside stabilization with drainage tunnel.Izabel Gomes Bastos 14 September 2006 (has links)
Esta dissertação apresenta o uso de drenagem profunda para estabilização de encostas, detalhando os sistemas existentes e suas aplicações. São relatados alguns casos de encostas estabilizadas através da drenagem profunda, tanto no Brasil como no exterior. Apresenta-se também um estudo de caso da obra de estabilização da encosta na qual está implantado o viaduto denominado VA-19, na Rodovia dos Imigrantes no Estado de São Paulo, em que foi utilizado túnel de drenagem como solução. É feita a análise da eficiência do túnel de drenagem para o rebaixamento do lençol freático e conseqüente estabilização da encosta. / This dissertation presents the use of deep drainage for slope stabilization, detailing the existent systems and their applications. Some cases of slope stabilized through deep drainage are reported. It is also presented a study of case of the slope stabilization which affected the overpass called VA-19, in the Imigrantes Highway, in the State of São Paulo which used drainage tunnel as a solution. The analysis of the drainage tunnel efficiency in the water table lowering and consequent slope stabilization.
|
6 |
Hydrogeophysical quantification of infiltration and recharge through soil-filled sinkholes using Time Domain Reflectometry and Electrical Resistivity TomographySchwartz, Benjamin Farley 28 November 2007 (has links)
This dissertation presents the results of a detailed physical and hydrogeophysical study of two soil-filled sinkholes mantled by ancient New River fluvial terrace deposits. Research was performed at the Virginia Tech Kentland Experimental Farms in Whitethorne, Virginia, USA between fall 2003 and spring 2007, and focused on characterizing infiltration, deep drainage, and recharge through soil-filled sinkholes. Using hydrogeophysical methods, the spatial and temporal distribution of soil moisture was modeled and potential recharge was quantified in two soil-filled sinkholes.
Access-tube time domain reflectometry (TDR) was used to derive one-dimensional (1-D) soil moisture profiles. During access-tube installation, 470 soil samples were obtained from depths between 0.3 and to 9.0 m and characterized both physically and chemically. Using these data, a TDR calibration method was developed. Physio-chemical, TDR moisture, and 1-D electrical resistivity tomography (ERT) data were used to derive a numerically optimized form of Archie's Law which was used to convert ERT measurements into volumetric soil moisture. These results led to development of 2-D ERT-derived distributions of soil moisture in three transects across the two sinkholes in two terraces. Potential recharge was quantified using time-series ERT data with comparison to modeled cumulative potential evapotranspiration (PET) and cumulative precipitation between May 17 and October 9, 2006. The patterns of ERT-derived potential recharge values compared well with those expected from PET and precipitation data. Over the monitoring period from late spring to early fall during this study, results showed that a period of intense rain followed by a 31-day period of consistent rain, in which the rate of precipitation was equal to or exceeded PET, were the only periods in which significant amounts of potential recharge occurred (from 19 to 31% of cumulative precipitation during the study). Spatial distributions of ERT-derived moisture clearly revealed that significant amounts of infiltration occurred on sinkhole flanks and bottoms. Runoff during periods of intense rain flowed to the topographically lowest point in the sinkholes where it infiltrated and resulted in localized zones of enhanced infiltration and potential recharge to the water table. / Ph. D.
|
Page generated in 0.0401 seconds