1 |
THE ROLE OF RAPID EYE MOVEMENT AND SLOW WAVE SLEEP FOR THE CONSOLIDATION OF MEMORY IN RATSFogel, STUART 26 October 2009 (has links)
The functions of sleep remain enigmatic. One of the dominant, yet more contentious hypotheses is that sleep is involved in memory consolidation. A large body of evidence supports the role of rapid eye movement (REM) sleep in memory consolidation, especially in rodents. In humans, the role of REM sleep in memory consolidation has also been investigated, however it is unclear if it supports only one type of memory, or consolidation for several memory systems. Recent evidence suggests that non-REM is also involved in memory consolidation. The role of theta activity during REM and sleep spindles during non-REM may provide electrophysiological signatures reflecting memory consolidation processes. The studies presented here attempt to further investigate the electrophysiological characteristics of the learning-dependent changes in REM and slow wave sleep (SWS) in rats. A 2-stage model of memory consolidation is outlined here, and both steps of the model were investigated. Consistent with previous studies, REM increases were observed following avoidance training. During this period, theta power during REM sleep was increased compared to non-learning rats. Increased sleep spindle density during SWS was observed following REM increases. When REM sleep was suppressed by infusing the GABAB agonist baclofen into the pedunculopontine nucleus, avoidance performance acquisition was impaired. Baseline sleep spindles predicted whether rats were able to learn to make avoidance responses. Results suggest that both REM and SWS may be sequentially involved in memory consolidation processes. Discrete periods (windows) exist for REM and SWS when memory consolidation processes appear to take place. Theta activity during REM sleep from 17- 20 h on the first post-training day and sleep spindles during SWS from 21-24 h on the first post- training day are increased in learning rats and are related to memory performance. / Thesis (Ph.D, Neuroscience Studies) -- Queen's University, 2009-10-26 12:07:47.515
|
Page generated in 0.3208 seconds