• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Evaluation of the effects of a highway improvement project on Key deer

Braden, Anthony Wayne 30 October 2006 (has links)
Deer-vehicle collisions (DVCs) along a 5.6-km segment of United States Highway 1 (US 1) on Big Pine Key (BPK), Florida responsible for approximately 26% of endangered Florida Key deer (Odocoileus virginianus clavium) annual mortalities. The Florida Department of Transportation (FDOT) constructed a 2.6-km long system of fencing, 2 underpasses, and 4 experimental deer guards to address DVCs along a portion of the US 1 roadway in 2001–2002. I evaluated the effectiveness of the project in reducing Key deer mortality by comparing (1) survival of radio-collared deer, (2) deer-vehicle collisions on US 1, and (3) determining the ability of deer to access the fenced segment. I found no significant difference in male or female survival. Key deer-vehicle collisions were reduced by 83–92% inside the fenced segment. However, overall US 1 Key deer-vehicle collisions did not change. Key deer entry into the fenced segment was minimized to 8 deer during the first-year resulting in 2 deer mortalities. I also assessed the potential impacts of the US 1 corridor project to Key deer movements by comparing (1) radio-collared Key deer annual ranges (2) radio-collared deer corridor movements, and (3) assessing Key deer underpass and corridor use. Female and male ranges and core areas did not change (P > 0.05). Deer movements within the US 1 corridor were comparable pre- (6 of 23 radio-collared deer crossed the corridor) and post-project (4 of 16). Infrared-triggered camera data indicate underpass movements increased over time. Collectively, post-project telemetry and camera data indicates US 1 highway improvements have not restricted Key deer movements. Hourly Key deer movement and US 1 traffic patterns were compared to annual US 1 DVCs. Hourly deer movements showed a positive correlation (P = 0.012, r = 0.505) to hourly DVCs for the full circadian period. Hourly US 1 traffic showed a significant positive relationship (P = 0.012, r = 0.787) with DVCs only during the night period. Evaluation of hourly deer movements and hourly traffic volume on US 1 found hourly DVCs to be the result of a combination between both variables.
2

Evaluation of the effects of a highway improvement project on Key deer

Braden, Anthony Wayne 30 October 2006 (has links)
Deer-vehicle collisions (DVCs) along a 5.6-km segment of United States Highway 1 (US 1) on Big Pine Key (BPK), Florida responsible for approximately 26% of endangered Florida Key deer (Odocoileus virginianus clavium) annual mortalities. The Florida Department of Transportation (FDOT) constructed a 2.6-km long system of fencing, 2 underpasses, and 4 experimental deer guards to address DVCs along a portion of the US 1 roadway in 2001–2002. I evaluated the effectiveness of the project in reducing Key deer mortality by comparing (1) survival of radio-collared deer, (2) deer-vehicle collisions on US 1, and (3) determining the ability of deer to access the fenced segment. I found no significant difference in male or female survival. Key deer-vehicle collisions were reduced by 83–92% inside the fenced segment. However, overall US 1 Key deer-vehicle collisions did not change. Key deer entry into the fenced segment was minimized to 8 deer during the first-year resulting in 2 deer mortalities. I also assessed the potential impacts of the US 1 corridor project to Key deer movements by comparing (1) radio-collared Key deer annual ranges (2) radio-collared deer corridor movements, and (3) assessing Key deer underpass and corridor use. Female and male ranges and core areas did not change (P > 0.05). Deer movements within the US 1 corridor were comparable pre- (6 of 23 radio-collared deer crossed the corridor) and post-project (4 of 16). Infrared-triggered camera data indicate underpass movements increased over time. Collectively, post-project telemetry and camera data indicates US 1 highway improvements have not restricted Key deer movements. Hourly Key deer movement and US 1 traffic patterns were compared to annual US 1 DVCs. Hourly deer movements showed a positive correlation (P = 0.012, r = 0.505) to hourly DVCs for the full circadian period. Hourly US 1 traffic showed a significant positive relationship (P = 0.012, r = 0.787) with DVCs only during the night period. Evaluation of hourly deer movements and hourly traffic volume on US 1 found hourly DVCs to be the result of a combination between both variables.

Page generated in 0.0386 seconds