• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Acidic dissolution of apatite and laser ablation condensation of SnO2-NiO

Tseng, Wan-Ju 18 July 2006 (has links)
This thesis is about the kinetics of anisotropic acidic/hydrothermal dissolution of apatite bulk single crystal vs. nanorods, and the kinetic phase change of dense nanocondensates of SnO2 vs. Ni-dissolved SnO2 prepared by laser ablation condensation technique. In the first regard, directional dissolution of a natural (OH,F,Cl)-bearing apatite has been studied at various solution pH values (0~3) and 30 oC. This apatite showed abnormally high O-H stretching frequencies due to the substitution of Cl for OH. The advance of dissolution front indicated that steady-state directional dissolution for pH = 0-2 followed an apparent rate law of rate(mole / m2h)¡×kaH+n, where the rate constants (k) are 2.15 and 1.61; and the rate orders (n) are 1.44 and 1.30 for [0001] and <11 0> directions, respectively. Previous study, however, indicated a smaller n value (n = 0.55~0.70) for fluorapatite powders at higher pHs. A nonlinear pH dependence of logarithmic dissolution rate at a wide pH range implied that the surface active sites and/or rate-determining steps have changed when the acidity of solution and/or the composition of the apatite were changed. The opening of etch pits on basal planes further indicated that the dissolution rates along the three principal directions have the following relationship: [0001] > <11-20> > <10-10> for pH=0-1, but the order was reversed for pH > 3. As a comparison, static immersion of needle-like hydroxyapatite nanoparticles in neutral hydrothermal solution at 100oC caused preferential dissolution along the crystallographic c-axis to form nanorods with a lower aspect ratio. The anisotropic dissolution behavior is due to diffusion-controlled rapid dissolution at the sharp tip, and interface-controlled dissolution at side surfaces in terms of active sites. Extensive dissolution was accompanied with amorphization via explosive generation of dislocations, forming corrugated surface with both negative and positive curvature regions. The amorphous residue was significantly Ca and OH depleted when treated in the hydrothermal solution at pH=3. The BET specific surface area of the apatite nanoparticles remained 45¡Ó1 m2/g after immersion in neutral solution at 100oC for 36 h, but drastically decreased to 24.5 m2/g in acidic (pH =3) solution at 100oC for 8 h due to coalescence of the partially amorphized apatite powders. The specific surface area and average pore size also remained nearly unchanged for the dry pressed powders subject to firing at 100oC, but decreased and increased, respectively when sintered shortly at 600oC in air. BJH measurements at 77 K indicated the N2 adsorption/desorption hysteresis loops shift toward high relative pressure for sintered/hydrothermally etched powders indicating a higher activation energy of forming overlain liquid-like nitrogen layers. This can be attributed to a lower surface energy of the powders due to their shape change and/or partial amorphization. Alternatively, desorption through cavitation via the small voids could occur, in particular for such treated samples with characteristic bimodal pore size distribution. In the second subject, dense SnO2 with fluorite-type related structures were synthesized via very energetic Nd-YAG laser pulse irradiation of oxygen-purged Sn target. Combined effects of rapid heating to very high temperatures, nanophase effect, and dense surfaces account for the condensation of fluorite-type structure which transformed martensitically to baddeleyite-type accompanied with twinning, commensurate shearing and shape change. Alternatively Pa-3-modified fluorite-type hardly survived transformation to a-PbO2 type and rutile type in the dynamic process analogous to the case of static decompression. In addition, the rutile-type SnO2 nanocondensates have {110}, {100} and {101} facets, which are beneficial for {~hkl} vicinal attachment to form edge dislocations, faults and twinned bicrystals. The {011}-interface relaxation, by shearing along <011> directions, accounts for a rather high density of edge dislocations near the twin boundary thus formed. The rutile-type SnO2 could be alternatively transformed from orthorhombic CaCl2-type structure (denoted as o) following parallel crystallographic relationship, (0 1)r//(0 1)o; [111]r//[111]o, and full of commensurate superstructures and twins parallel to (011) of both phases. Furthermore, SnO2-NiO solid solution (ss) condensates were fabricated by laser ablation on Ni-Sn target at 1.1 J/pulse and oxygen flow of 50 L/min. AEM observations indicated that the particles were more or less coalesced/agglomerated as nano chain aggregate or in close packed manner. The Ni-rich condensates have rock salt structure with defect clusters not in paracrystalline distribution as would otherwise develop into the spinel phase. The Sn-rich condensates are predominantly rutile-type with minor baddeleyite-type, which are vulnerable to martensitic transformation/relaxation to form {101} incommensuare faults as well as epitaxial twin variants of rutile upon rapid cooling and/or electron irradiation. Islands of metallic Ni-Sn-NiSn were partially oxidized/solidified when deposited on silica glass.
2

Mikrostrukurelle Mechanismen der Strahlenversprödung

Ganchenkova, Maria, Borodin, Vladimir A., Ulbricht, Andreas, Böhmert, Jürgen, Voskoboinikov, Roman, Altstadt, Eberhard 31 March 2010 (has links) (PDF)
Gegenstand des Vorhabens im Rahmen der WTZ mit Russland ist die Versprödung des Reaktordruckbehälters infolge der Strahlenbelastung mit schnellen Neutronen im kernnahen Bereich. Um den Einfluss von bestrahlungsinduzierten Gitterdefekten auf die mechanischen Eigenschaften zu ermitteln, wurden analytische Berechnungen zum Einfluss von Hindernissen auf die Beweglichkeit von Versetzungen und damit auf die Ausbildung einer plastischen Zone an der Rissspitze durchgeführt. Es wird demonstriert, dass sich die an der Rissspitze entstehenden Versetzungen an dem Hindernis (bestrahlungsinduzierte Punktdefekte) aufstauen. In Abhängigkeit der Rissbelastung KI und der Entfernung des Hindernisses von der Rissspitze werden die Versetzungsdichte und das durch den Versetzungsstau verursachte Spannungsfeld berechnet. Mit Hilfe von Experimenten zur Neutronenkleinwinkelstreuung (SANS - small angle neutron scattering) an verschiedenen WWER-Stählen und Modelllegierungen wurden Größenverteilungen und die Volumenanteile der strahleninduzierten Defekte für verschiedene Bestrahlungszustände (Fluenzen, Bestrahlungstemperaturen) ermittelt. Es wurde gezeigt, dass sich die strahleninduzierte Werkstoffschädigung durch Wärmebehandlung weitgehend wieder ausheilen lässt. Nach der thermischen Ausheilung ist der Werkstoff bei erneuter Bestrahlung weniger anfällig für strahleninduzierte Defekte. Die Ergebnisse der SANS-Untersuchungen wurden mit der Änderung der mechanischen Eigenschaften (Härte, Streckgrenze und Sprödbruchübergangstemperatur) korreliert. Mit der kinetischen Gitter-Monte-Carlo-Methode wurden numerische Sensitivitätsstudien zum Einfluss des Cu-Gehalts auf die Stabilität von Defekt-Clustern durchgeführt. Die Berechnungen zeigen, dass die Anwesenheit von Cu-Atomen zur Bildung von langlebigen Defekten führt. Dabei werden Leerstellen in Cu/Leerstellen-Cluster eingefangen. Leerstellen in reinem Eisen sind bei Bestrahlungstemperaturen von 270 °C dagegen nicht stabil, die Lebensdauer liegt zwischen 0.01 s und 1 s. Die kritische Cu-Konzentration, ab welcher stabile Defekte entstehen, beträgt ca. 0.1 Masseprozent.
3

Mikrostrukurelle Mechanismen der Strahlenversprödung

Ganchenkova, Maria, Borodin, Vladimir A., Ulbricht, Andreas, Böhmert, Jürgen, Voskoboinikov, Roman, Altstadt, Eberhard January 2006 (has links)
Gegenstand des Vorhabens im Rahmen der WTZ mit Russland ist die Versprödung des Reaktordruckbehälters infolge der Strahlenbelastung mit schnellen Neutronen im kernnahen Bereich. Um den Einfluss von bestrahlungsinduzierten Gitterdefekten auf die mechanischen Eigenschaften zu ermitteln, wurden analytische Berechnungen zum Einfluss von Hindernissen auf die Beweglichkeit von Versetzungen und damit auf die Ausbildung einer plastischen Zone an der Rissspitze durchgeführt. Es wird demonstriert, dass sich die an der Rissspitze entstehenden Versetzungen an dem Hindernis (bestrahlungsinduzierte Punktdefekte) aufstauen. In Abhängigkeit der Rissbelastung KI und der Entfernung des Hindernisses von der Rissspitze werden die Versetzungsdichte und das durch den Versetzungsstau verursachte Spannungsfeld berechnet. Mit Hilfe von Experimenten zur Neutronenkleinwinkelstreuung (SANS - small angle neutron scattering) an verschiedenen WWER-Stählen und Modelllegierungen wurden Größenverteilungen und die Volumenanteile der strahleninduzierten Defekte für verschiedene Bestrahlungszustände (Fluenzen, Bestrahlungstemperaturen) ermittelt. Es wurde gezeigt, dass sich die strahleninduzierte Werkstoffschädigung durch Wärmebehandlung weitgehend wieder ausheilen lässt. Nach der thermischen Ausheilung ist der Werkstoff bei erneuter Bestrahlung weniger anfällig für strahleninduzierte Defekte. Die Ergebnisse der SANS-Untersuchungen wurden mit der Änderung der mechanischen Eigenschaften (Härte, Streckgrenze und Sprödbruchübergangstemperatur) korreliert. Mit der kinetischen Gitter-Monte-Carlo-Methode wurden numerische Sensitivitätsstudien zum Einfluss des Cu-Gehalts auf die Stabilität von Defekt-Clustern durchgeführt. Die Berechnungen zeigen, dass die Anwesenheit von Cu-Atomen zur Bildung von langlebigen Defekten führt. Dabei werden Leerstellen in Cu/Leerstellen-Cluster eingefangen. Leerstellen in reinem Eisen sind bei Bestrahlungstemperaturen von 270 °C dagegen nicht stabil, die Lebensdauer liegt zwischen 0.01 s und 1 s. Die kritische Cu-Konzentration, ab welcher stabile Defekte entstehen, beträgt ca. 0.1 Masseprozent.

Page generated in 0.0519 seconds