• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Impact of direct-fed microbials on nutrient utilization in beef cattle

Kenney, Nicole 01 January 2013 (has links)
The impact of lactate producing direct-fed microbial (DFM) on growth performance and rumen fermentation in beef cattle was explored in four studies. Experiment 1 studied the interaction between DFM and degradable intake protein (DIP) supply in receiving cattle. No differences (P≥0.06) in intake, morbidity, or immune response were observed; however, during the first 28 d gain and efficiency responses to DFM were dependent on DIP (DIP×DFM P≤0.05). Experiment 2 showed that in vitro gas production and select endpoint metabolites differed (P≤0.04) with DFM application. Experiment 3 compared lactate producing DFM to a lactate producing/utilizing DFM in finishing cattle. No differences (P≥0.14) in intake, gain, efficiency, or carcass characteristics were observed between control and lactate DFM; however, gain and growth efficiency differed (P≤0.05) between the lactate producing and lactate producing/utilizing DFM during the later portions of feeding. Experiment 4 studied the impact of DFM on ruminal fermentation, lactate utilization, and total tract digestibility. Ruminal pH and molar proportions of acetate were increased (P≤0.05) with DFM; however, lactate utilization and total tract digestibility did not differ (P≥0.33). The studies suggest that DFM improve growth performance during receiving and responses are at least partly mediated through differences in ruminal fermentation.

Page generated in 0.0764 seconds