1 |
A holistic framework of degradation modeling for reliability analysis and maintenance optimization of nuclear safety systems / Un cadre holistique de la modélisation de la dégradation pour l’analyse de fiabilité et optimisation de la maintenance de systèmes de sécurité nucléairesLin, Yanhui 13 January 2016 (has links)
Composants de systèmes de sûreté nucléaire sont en général très fiable, ce qui conduit à une difficulté de modéliser leurs comportements de dégradation et d'échec en raison de la quantité limitée de données disponibles. Par ailleurs, la complexité de cette tâche de modélisation est augmentée par le fait que ces systèmes sont souvent l'objet de multiples processus concurrents de dégradation et que ceux-ci peut être dépendants dans certaines circonstances, et influencé par un certain nombre de facteurs externes (par exemple la température, le stress, les chocs mécaniques, etc.).Dans ce cadre de problème compliqué, ce travail de thèse vise à développer un cadre holistique de modèles et de méthodes de calcul pour l'analyse basée sur la fiabilité et la maintenance d'optimisation des systèmes de sûreté nucléaire en tenant compte des connaissances disponibles sur les systèmes, les comportements de dégradation et de défaillance, de leurs dépendances, les facteurs influençant externes et les incertitudes associées.Les contributions scientifiques originales dans la thèse sont:(1) Pour les composants simples, nous intégrons des chocs aléatoires dans les modèles de physique multi-états pour l'analyse de la fiabilité des composants qui envisagent dépendances générales entre la dégradation et de deux types de chocs aléatoires.(2) Pour les systèmes multi-composants (avec un nombre limité de composants):(a) un cadre de modélisation de processus de Markov déterministes par morceaux est développé pour traiter la dépendance de dégradation dans un système dont les processus de dégradation sont modélisées par des modèles basés sur la physique et des modèles multi-états; (b) l'incertitude épistémique à cause de la connaissance incomplète ou imprécise est considéré et une méthode volumes finis est prolongée pour évaluer la fiabilité (floue) du système; (c) les mesures d'importance de l'écart moyen absolu sont étendues pour les composants avec multiples processus concurrents dépendants de dégradation et soumis à l'entretien; (d) la politique optimale de maintenance compte tenu de l'incertitude épistémique et la dépendance de dégradation est dérivé en combinant schéma volumes finis, évolution différentielle et non-dominée de tri évolution différentielle; (e) le cadre de la modélisation de (a) est étendu en incluant les impacts des chocs aléatoires sur les processus dépendants de dégradation.(3) Pour les systèmes multi-composants (avec un grand nombre de composants), une méthode d'évaluation de la fiabilité est proposé considérant la dépendance dégradation en combinant des diagrammes de décision binaires et simulation de Monte Carlo pour réduire le coût de calcul. / Components of nuclear safety systems are in general highly reliable, which leads to a difficulty in modeling their degradation and failure behaviors due to the limited amount of data available. Besides, the complexity of such modeling task is increased by the fact that these systems are often subject to multiple competing degradation processes and that these can be dependent under certain circumstances, and influenced by a number of external factors (e.g. temperature, stress, mechanical shocks, etc.). In this complicated problem setting, this PhD work aims to develop a holistic framework of models and computational methods for the reliability-based analysis and maintenance optimization of nuclear safety systems taking into account the available knowledge on the systems, degradation and failure behaviors, their dependencies, the external influencing factors and the associated uncertainties.The original scientific contributions of the work are: (1) For single components, we integrate random shocks into multi-state physics models for component reliability analysis, considering general dependencies between the degradation and two types of random shocks. (2) For multi-component systems (with a limited number of components):(a) a piecewise-deterministic Markov process modeling framework is developed to treat degradation dependency in a system whose degradation processes are modeled by physics-based models and multi-state models; (b) epistemic uncertainty due to incomplete or imprecise knowledge is considered and a finite-volume scheme is extended to assess the (fuzzy) system reliability; (c) the mean absolute deviation importance measures are extended for components with multiple dependent competing degradation processes and subject to maintenance; (d) the optimal maintenance policy considering epistemic uncertainty and degradation dependency is derived by combining finite-volume scheme, differential evolution and non-dominated sorting differential evolution; (e) the modeling framework of (a) is extended by including the impacts of random shocks on the dependent degradation processes.(3) For multi-component systems (with a large number of components), a reliability assessment method is proposed considering degradation dependency, by combining binary decision diagrams and Monte Carlo simulation to reduce computational costs.
|
Page generated in 0.0907 seconds