• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 10
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 17
  • 15
  • 11
  • 10
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mast cells as a source and target for nitric oxide and reactive oxygen species

Swindle, Emily Jane January 2003 (has links)
No description available.
2

Effects of nitric oxide on mast cell activation

Koranteng, Rachael Darkoa January 2001 (has links)
No description available.
3

Role of the chemokine receptor CXCR3 in human mast cell degranulation and signalling

Willox, Ian January 2009 (has links)
The chemokine receptor CXCR3, which has three known variants (CXCR3-A, CXCR3-B and CXCR3-Alt), has been implicated in the recruitment of mast cells to tissues in many different chronic diseases with its agonists found in elevated levels in many pulmonary diseases. All three variants of CXCR3 were detected in cord blood-derived mast cells at the mRNA level. Using an antibody that is unable to distinguish individual CXCR3 isoforms, we detected a marked down-regulation of intracellular protein during maturation from progenitor cells, with no concomitant changes in the modest surface expression of CXCR3. The known CXCR3 agonists CXCL9, CXCL10 and CXCL11 as well as the reported CXCR3-B agonist CXCL4, were able to induce Akt and ERK1/2 phosphorylation, as well as partial degranulation. Responses to all agonists were inhibited by pre-treatment with selective CXCR3 antagonists and pertussis toxin. Use of novel isoform-selective inhibitors indicates that the p110 isoform of PI3K is required for degranulation and signalling responses to CXCR3 agonists. Unexpectedly, dual (but not individual) isoform inhibition of the class I  and  isoforms substantially inhibited signalling and degranulation responses, indicating a hitherto unrecognised synergy between these isoforms, which provide a conduit for CXCR3 signalling in mast cells.
4

The effects of beta-adrenoceptor agonists on mast cell degranulation.

January 1993 (has links)
Pui Lan Wong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1993. / Includes bibliographical references (Leaves 109-122). / Abstract --- p.i / Acknowledgements --- p.iii / Chapter Chapter1 --- Introduction / Chapter 1.1 --- A general introduction on mast cells --- p.1 / Chapter 1.2 --- Activation of mast cells --- p.6 / Chapter 1.3 --- Mediators of mast cells --- p.18 / Chapter 1.4 --- Usage of β-adrenoceptor agonists in asthma therapy --- p.26 / Chapter 1.5 --- Aim of this study --- p.32 / Chapter Chapter2 --- Materials and methods / Chapter 2.1 --- Chemicals --- p.42 / Chapter 2.2 --- Buffers and stock solutions --- p.43 / Chapter 2.3 --- Source of mast cells --- p.45 / Chapter 2.4 --- Animal sensitization --- p.45 / Chapter 2.5 --- Isolation of mast cells --- p.46 / Chapter 2.6 --- Procedure for the investigation of the effects of adrenoceptor agonists on histamine release from mast cells --- p.48 / Chapter 2.7 --- Procedure for the investigation of propranolol antagonism --- p.49 / Chapter 2.8 --- Histamine assay --- p.50 / Chapter 2.9 --- Data analysis --- p.50 / Chapter Chapter3 --- Results / Chapter 3.1 --- Establishment of experimental conditions --- p.53 / Chapter 3.2 --- The effects of β-agonists on immunologically induced histamine release from guinea pig lung mast cells --- p.54 / Chapter 3.3 --- The effects of β-agonists and two anti-allergic drugs on immunologically induced histamine release from guinea pig lung mast cells --- p.56 / Chapter 3.4 --- The effects of β2-agonists on histamine release induced by non-immunological agents from guinea pig lung mast cells --- p.56 / Chapter 3.5 --- Antagonism by propranolol on the effects of β2-agonists on histamine release from guinea pig lung mast cells --- p.57 / Chapter 3.6 --- The effects of β2-agonists on immunologically induced histamine release from rat peritoneal mast cells --- p.58 / Chapter 3.7 --- The effects of β2-agonists on immunologically induced histamine release from human lung mast cells --- p.58 / Chapter 3.8 --- "Comparison of the effects of β2-agonists on immunologically induced histamine release from mast cells isolated from the rat peritoneum, the guinea pig lung and the human lung" --- p.59 / Chapter Chapter4 --- Discussion / Chapter 4.1 --- The effects of β-agonists on immunologically induced histamine release from guinea pig lung mast cells --- p.89 / Chapter 4.2 --- The effects of β2-agonists and two anti-allergic drugs on immunologically induced histamine release from guinea pig lung mast cells --- p.97 / Chapter 4.3 --- The effects of novel β2-agonists on histamine release induced by non-immunological agents from guinea pig lung mast cells --- p.99 / Chapter 4.4 --- The study of propranolol --- p.100 / Chapter 4.5 --- The heterogeneity of mast cells --- p.103 / Chapter Chapter5 --- General conclusion --- p.107 / References --- p.109
5

Control of Secondary Granule Release in Neutrophils by Ral GTPase

Chen, Xiaojing 07 May 2011 (has links)
Neutrophil (PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocyto-sis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, I found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules, but not primary or tertiary granules, and caused dy-sregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, while chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Over-expression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, I found that Ral, which was associatedwith the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral transloca-tion intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattrac-tant stimulation.
6

Modulation of neutrophil degranulation by hypoxia

Hoenderdos, Kim January 2015 (has links)
Neutrophils are key effector cells of the innate immune system. They employ a number of powerful ‘weapons’ to eliminate pathogens, including an array of destructive proteins packaged into distinctive granule subsets. In addition to their microbicidal activity, these granule proteins are capable of causing substantial tissue damage if inappropriately deployed. To mitigate against this possibility, most physiological stimuli induce minimal extracellular degranulation. Sites of inflammation and infection are usually hypoxic, and it has been shown that oxygen depletion compromises neutrophil function by impairing the generation of reactive oxygen species and hence bacterial killing. The key finding reported in this thesis is that hypoxia substantially increases the release of all neutrophil granule subsets, as measured by the release of (active) hallmark proteins (elastase, myeloperoxidase, lactoferrin and matrix metalloproteinase-9). In consequence, supernatants from hypoxic neutrophils induced substantially more damage to lung epithelial cell layers than supernatants from neutrophils cultured under normoxic conditions; this damage was protein- and protease-dependent. This pattern of damage was seen consistently across lung adenocarcinoma-derived epithelial cells, primary immortalised lung epithelial cells, and primary human bronchial epithelial cells grown in physiological air-liquid interface culture. Surprisingly, the mechanism of hypoxia-augmented degranulation was found to be independent of protein synthesis and specifically, of the transcription factor HIF-1α (the ‘master-regulator’ of hypoxic responses); thus, hypoxia did not affect mRNA transcript or protein abundance of the major granule components, and hypoxia mimetics failed to recapitulate the phenotype. Inhibition of the key pathways known to be involved in neutrophil degranulation, including, phosphatidylinositol 3-kinase and phospholipase C, but not calcium flux prevented augmented granule release under hypoxia In conclusion, hypoxia induces a destructive neutrophil phenotype, with increased release of multiple histotoxic proteases. This may contribute to tissue injury and disease pathogenesis in a range of clinically important conditions.
7

The role of the dileucine motif in Helix VIII of the BLT1 receptor and RhoA in neutrophil degranulation

Haider, Waqar Yunus January 2010 (has links)
Neutrophil degranulation involves a number of well-orchestrated structural and biochemical events. We have investigated the mechanism of intracellular signalling involved in neutrophil degranulation that was mediated by the high affinity leukotriene (LT)B[subscript 4] receptor, BLT1. The model systems used were consisted of Peripheral blood neutrophils as well as promyeloid PLB-985 cells, stably transfected with human BLT1 cDNA (PLB-BLT) or a substitution mutant (2L(304-305)/A) of the distal dileucine motif in helix VIII of BLT1, and differentiated into a neutrophil-like phenotype. The degranulation of these cells was measured in the presence and absence of factors that would affect the signaling pathway. The results show that Degranulation responses to LTB[subscript 4] were similar for differentiated PLB-BLT1 and neutrophils. However, the degranulation response of cells bearing the dileucine mutation in helix VIII of BLT1 was significantly reduced in response to LTB[subscript 4]. Pretreatment of differentiated PLB-BLT1 cells and neutrophils with Y-27632, a pharmacological inhibitor of p160-ROCK, the down-stream effector of the small GTPase RhoA, abrogated their degranulation in response to LTB[subscript 4]. The degranulation defect observed with the dileucine mutation was corrected by transient transfection of the cells bearing the mutation with a constitutively active form of RhoA. Taken together, our results suggest an essential role for the distal dileucine motif in helix VIII of BLT1 involving RhoA which allows normal neutrophil degranulation in response to LTB[subscript 4].
8

Control of Secondary Granule Release in Neutrophils by Ral GTPase

CHEN, XIAOJING 07 May 2011 (has links)
Neutrophil (PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocyto-sis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, I found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules, but not primary or tertiary granules, and caused dy-sregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, while chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Over-expression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, I found that Ral, which was associatedwith the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral transloca-tion intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattrac-tant stimulation.
9

Stereoselektive Synthese von Sphingolipiden zur Inhibierung der Degranulation von Mastzellen

Zankl, Claudia 07 August 2009 (has links) (PDF)
Die Degranulation von Mastzellen soll durch Glycosphingolipide, welche mit der Zellmembran wechselwirken inhibiert werden. Der Sphingosingrundkörper wurde in zehn-stufigen Synthese ausgehend von N-Boc-Serin, aufgebaut. Die anschließende Glycosylierung erfolgte nach der Trichloracetimidatmethode in sehr guten Ausbeuten und stellte den Schlüsselschritt dar. Durch die Variation von unter Anderem der Amidseitenkette, der Glycosylkopfgruppe und des Sphingosingrundkörpers wurde eine Vielzahl an Derivaten für das Screening im Degranulationsassay bereitgestellt. / The present dissertation covers the synthesis of glycosphingolipids which interact with the cell membrane in order to inhibit the degranulation of mast cells. The sphingosin body was synthesized in ten steps starting from N-Boc-Serin. The key step, the glycosylation was achieved using the trichloracetimidat method. The variation of the amid sidechain, the gylcosyl headgroup and the sphingosin body created a number of derivatives that were tested in the degranulation assay.
10

Stereoselektive Synthese von Sphingolipiden zur Inhibierung der Degranulation von Mastzellen

Zankl, Claudia 06 July 2009 (has links)
Die Degranulation von Mastzellen soll durch Glycosphingolipide, welche mit der Zellmembran wechselwirken inhibiert werden. Der Sphingosingrundkörper wurde in zehn-stufigen Synthese ausgehend von N-Boc-Serin, aufgebaut. Die anschließende Glycosylierung erfolgte nach der Trichloracetimidatmethode in sehr guten Ausbeuten und stellte den Schlüsselschritt dar. Durch die Variation von unter Anderem der Amidseitenkette, der Glycosylkopfgruppe und des Sphingosingrundkörpers wurde eine Vielzahl an Derivaten für das Screening im Degranulationsassay bereitgestellt. / The present dissertation covers the synthesis of glycosphingolipids which interact with the cell membrane in order to inhibit the degranulation of mast cells. The sphingosin body was synthesized in ten steps starting from N-Boc-Serin. The key step, the glycosylation was achieved using the trichloracetimidat method. The variation of the amid sidechain, the gylcosyl headgroup and the sphingosin body created a number of derivatives that were tested in the degranulation assay.

Page generated in 0.1088 seconds