Spelling suggestions: "subject:"sphingolipide"" "subject:"sphingolipides""
1 |
Identifizierung und Charakterisierung einer Familie von Sphingolipid-D4-Desaturasen [Sphingolipid-Delta-4-Desaturasen] mit Mitgliedern aus Tieren, Pflanzen und PilzenTernes, Philipp. January 2003 (has links) (PDF)
Hamburg, Universiẗat, Diss., 2003.
|
2 |
The \(Candida\) \(albicans\) quorum-sensing molecule farnesol impairs dendritic cell function by modulating the \(de\) \(novo\) synthesis of sphingolipids / Das \(Candida\) \(albicans\) Quorum-Sensing Molekül Farnesol beeinträchtigt die Funktion dendritischer Zellen durch Veränderung der \(de\) \(novo\) Synthese von SphingolipidenBatliner, Maria January 2024 (has links) (PDF)
Farnesol (FOH), an acyclic sesquiterpene alcohol and the first described quorum-sensing molecule in an eukaryotic organism, is produced by the opportunistic fungal pathogen Candida albicans to regulate the initiation of filamentation and biofilm formation. Previous studies have found immunomodulatory effects of FOH in monocyte-derived dendritic cells (DCs). FOH regulated transcriptional response and phenotype in DCs, which led to insufficient T cell priming. The effects of FOH on DC maturation were partially regulated through the activation of the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ). Another ligand of PPAR-γ, the bioactive sphingolipid metabolite sphingosine 1-phosphate (S1P), impaired DC maturation. Sphingolipids are important components of cellular membranes that have been implicated in the establishment of infections and can affect immune cell function. Given the importance of sphingolipids during infection and the immunomodulatory role of FOH, the aim of the present study was to detect changes in sphingolipid metabolism induced by FOH and analyze the underlying mechanisms and consequences for DCs. Therefore, metabolites of the sphingolipid synthesis in DCs differentiated from monocytes in the presence of FOH were detected by HPLC-MS/MS. FOH induced significant changes in the de novo biosynthesis of sphingolipids by increasing the enzymatic activity of the first enzyme in this pathway, the serine palmitoyltransferase, which led to increased levels of downstream metabolites 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate. Further, FOH inhibited the activity of the last enzyme of the de novo synthesis of sphingolipids, the dihydroceramide desaturase (Des), via the induction of oxidative stress, resulting in the accumulation of dihydroceramide and dihydrosphingomyelin, and reduced levels of ceramide. In the presence of FOH, DCs reduced their mitochondrial respiration, an observation that has been previously linked to increased levels of dihydroceramide. The effects of FOH on the sphingolipid metabolism further influenced phospholipid metabolism and neutral lipid synthesis measured by UPLC-qTOF-MS, causing a reduction diacylglycerol and an increase in cellular triacylglycerol which resulted in the formation of lipid droplets. The inhibition of Des by specific inhibitors affected the DC phenotype and reduced pro-inflammatory type I IFN secretion, similar to FOH. Consequently, inhibition of Des by FOH or chemical inhibitors impaired DCs to prime IFN-γ producing T cells. Importantly, the regulatory effects of FOH on sphingolipid metabolism, triacylglycerol synthesis and mitochondrial respiration was not dependent on PPAR-γ activation. In summary, the study showed a novel effect of FOH on different lipid pathways and mitochondrial function that impaired the antigen-presenting abilities of DCs and resulted in failure to prime T cells, indicating that C. albicans can manipulate host cell metabolism and immune response via its quorum-sensing mechanism. / Farnesol (FOH), ein Alkohol aus der Gruppe der Terpene und das erste beschriebene Quorum-Sensing Molekül in einem eukaryontischen Organismus, wird von dem opportunistischen und pathogenen Pilz Candida albicans produziert. C. albicans nutzt FOH um die Hyphenbildung und Formation von Biofilmen zu regulieren. Vorherige Studien konnten immunomodulatorische Effekte von FOH auf die Differenzierung von Monozyten zu Dendritischen Zellen (DZ) nachweisen. FOH regulierte die Transkription und den Phänotyp von DZ, was zu einer unzureichenden T-Zell Aktivierung führte. Die Auswirkungen von FOH auf die Differenzierung und Reifung von DZ wurden teilweise durch die Aktivierung des Nuklearrezeptors peroxisome proliferator-activated receptor gamma (PPAR-γ) reguliert. Ein weiterer Ligand von PPAR-γ, der Lipidmediator Sphingosin 1-phosphat (S1P), beeinträchtigte die Reifung von DZ, ähnlich wie FOH. Sphingolipide sind wichtige Bestandteile von Zellmembranen, die den Ablauf von Infektionen und die Funktion von Immunzellen beeinflussen können. Angesichts der bedeutenden Rolle von Sphingolipiden während der Infektion und der immunmodulatorischen Rolle von FOH, war das Ziel der vorliegenden Studie die durch FOH induzierten Veränderungen im Sphingolipid Stoffwechsel zu erforschen und die zugrunde liegenden Mechanismen und Folgen für DZ zu analysieren. Daher wurden die Effekte von FOH auf die Metabolite der Sphingolipid Synthese in DZ, die aus Monozyten differenziert wurden, mittels HPLC-MS/MS nachgewiesen. FOH verursachte signifikante Veränderungen in der de novo Biosynthese von Sphingolipiden. Die Aktivität des ersten Enzyms der Sphingolipid Synthese, die Serine Palmitoyltransferase, war durch Zugabe von FOH in DZ erhöht. Dies führte zu einem Anstieg der entstandenen Metaboliten 3-Keto-Dihydrosphingosin, Dihydrosphingosin und Dihydrosphingosin 1-phosphat. Zudem hemmte FOH durch die Erzeugung von oxidativem Stress die Aktivität des letzten Enzyms der de novo Synthese von Sphingolipiden, Dihydroceramid Desaturase (Des). Dies führte zu einer Anhäufung an Dihydroceramid und Dihydrosphingomyelin, sowie zu einer Verringerung des Ceramidspiegels. Darüber hinaus verringerte FOH die mitochondriale Atmung in DZ. Diese Beobachtung wurde in vorherigen Studien mit erhöhten Dihydroceramidwerten in Verbindung gebracht. Die Auswirkungen von FOH auf den Sphingolipid Stoffwechsel beeinflussten außerdem den Phospholipid Stoffwechsel und die Synthese neutraler Lipide, die mittels UPLC-qTOF-MS gemessen wurden. Die Zugabe von FOH führte zu einer Verringerung des Diacylglycerolspiegels und zu einem Anstieg von zellulärem Triacylglycerol, was zur Bildung von Lipidtropfen führte. Die Hemmung von Des durch spezifische Inhibitoren wirkte sich auf den Phänotyp der DZ aus und verringerte die Sekretion von pro-inflammatorischem Typ I IFN, ähnlich wie FOH. Folglich beeinträchtigte die Hemmung von Des die Fähigkeit der DZ IFN-γ produzierende T-Zellen zu aktivieren. Die Regulierung des Sphingolipid Stoffwechsels, der Triacylglycerol Synthese und der mitochondrialen Atmung durch FOH war nicht von der PPAR-γ Aktivierung abhängig. Zusammenfassend zeigte die Studie eine neuartige Wirkung von FOH auf verschiedene Lipidstoffwechsel und die mitochondriale Funktion in DZ, die zur Beeinträchtigung der Antigen-Präsentation von DZ führte und T-Zell Aktivierung verhinderte. Diese Ergebnisse deuten darauf hin, dass C. albicans den Stoffwechsel der Wirtszellen und die Immunantwort über seinen Quorum-Sensing Mechanismus manipulieren kann.
|
3 |
Untersuchung der Lipidnachbarschaft von Sphingolipiden in Modellmembranen und Membranen kultivierter ZellenHörnschemeyer, Jörg. Unknown Date (has links) (PDF)
Uni., Diss., 2001--Bonn.
|
4 |
Bioorthogonal funktionalisierte Sphingolipide zur Evaluierung von Lipiddynamiken \(in\) \(vivo\) / Bioorthogonal functionalized sphingolipids for evaluation of lipid dynamics \(in\) \(vivo\)Walter, Tim January 2018 (has links) (PDF)
In der Kontrolle von viralen oder bakteriellen Infektionen spielen Sphingolipide eine essentielle Rolle[335-336], weshalb sich inzwischen die Forschung vermehrt an Sphingolipiden und -analoga als Wirkstoffen gegen die verschiedensten Erreger beschäftigt.[9] Dabei finden in der Synthese und Identifikation potentieller Wirkstoffe auch clickchemiebasierte Ansätze Anwendung.[224] Allerdings ist die Wirkweise von sphingolipidbasierten Pharmaka auch in viraler und mikrobieller Pathogenese bisher ungeklärt.
Mit der Entdeckung der CuAAC[112-113] sowie deren modernen Varianten und Alternativen, die gemeinsam unter dem Begriff Clickchemie zusammengefasst werden, ist es möglich, die strukturellen Änderungen von Biomolekülen klein zu halten und durch spätere Konjugation mit Farbstoffen Fluoreszenspektroskopie zu ermöglichen.[339-340] Während in den letzten Jahren die Clickchemie breite Anwendung zur Modifikation von Proteinen[130], Kohlenhydraten[341] und DNA[340] gefunden hat blieben Lipide lange unbeachtet[342], was vor allem auch für Sphingolipide gilt.
In dieser Arbeit werden bioorthogonal funktionalisierte Sphingolipide und -analoga vorgestellt, um die Vielseitigkeit der Clickchemie auf das Feld der Sphingolipide zu übertragen. Die clickfähigen Lipidanaloga ermöglichen detaillierte Einblicke in die dynamische Organisation von Sphingolipiden bei Infektionsprozessen und ihr Einsatz als therapeutische Wirkstoffe oder zur Generierung von antibakteriellen Oberflächenbeschichtungen wurden untersucht.
Die dargestellten azidmodifizierten Sphingolipide und –analoga konnten in Zusammenarbeit mit Kooperationspartnern, bezüglich ihrer Verwendung in Visualisierungsexperimenten und antibakteriellen Eigenschaften untersucht werden.
Die Ceramidderivate konnten genutzt werden, um den Einfluss von Kettenlänge und Position des Azides der acylierten Säure auf die in vivo-Konjugation mit dem Fluoreszenzfarbstoff DBCO-Sulfo-Cy5 in Jurkatzellen genauer zu untersuchen.[211]
Auch konnten azidfunktionalisierte Ceramide auf ihre Eignung zur Visualisierung von Ceramiddynamiken während T-Stimulation untersucht werden.[205] In diesem Zusammenhang sind visualisierbare Ceramide von besonderer Bedeutung, da die T-Zellstimulation die ASM-Aktivierung zur Folge hat, die wiederum Ceramide freisetzt.
Mit dem azidmodifizierten Phytosphingosinderivat gelang es erstmals ein azidmodifiziertes Sphingolipid nach Inkubation von Arabidopsis thaliana Setzlingen mittels CuAAC mit einem Fluoreszenzfarbstoff zu konjugieren.[258]
Des Weiteren konnten die azidfunktionalisierten N-Oleoylserinole in verschiedenen Zelltypten erfolgreich eingebaut und selektiv mit Fluoreszenzfarbstoff visualisiert werden. Kofärbungen mit GFP-PKCζ und Antikörpermarkierungen von Ceramid sowie PKCζ zeigten, dass es sich bei den Enantiomeren um ceramidimitierende Lipidanaloga handelt. Somit eignen sich diese N-Oleoylserinolanaloga, um die Interaktion von Ceramiden mit der Proteinkinase Cζ zu untersuchen.
Da viele natürliche Sphingolipide antibakterielle Eigenschaften aufweisen, konnte in Kooperation mit Jérôme Becam der Einsatz azidmodifizierter Ceramide als Wirkstoff gegen Neisseria meningitidis, Neisseria gonorrhoeae sowie Escherichia coli und Staphylococcus aureus untersucht werden. ωN3-C6-Cer zeigt gute bakterizide Eigenschaften gegen Neisseria meningitidis und Neisseria gonorrhoeae, ohne dabei toxisch gegenüber den Wirtszellen zu sein. Die Ceramidanaloga αN3-C6-Cer, αN3-C16-Cer und ωN3-C16-Cer weisen keine antibakteriellen Eigenschaften auf, aber sie wurden effizient in die Membran der Neisseriae eingebaut und konnten ebenfalls erfolgreich bioorthogonal markiert werden. Des Weiteren zeigten hochauflösende dSTORM-Aufnahmen der Bakterien, im Gegensatz zu Humanzellen, eine homologe Verteilung der konjugierten Ceramide. Da Ceramide eine wichtige Rolle in der Infektionsbekämpfung spielen, sind die in dieser Arbeit synthetisierten azidmodifizierten Ceramide wertvolle Werkzeuge, um die Interaktion von Bakterien mit Humanzellen zu untersuchen.
Außerdem konnte im Rahmen dieser Arbeit erfolgreich eine innovative Methode entwickelt werden, um alkinpräsentierende Linker auf die Oberfläche von Nunc Covalink 96 Microtiterplatten kovalent zu binden und die Alkine konnten anschließend mittels CuAAC mit den in dieser Arbeit synthetisierten azidfunktionalisierten Lipiden zu konjugiert werden. Ziel der Methode war es potentielle Moleküle für bakterizide Oberflächenmodifikationen zu identifizieren. Mittels solcher Oberflächenmodifikationen soll die Biofilmbildung in Endotrachealtuben verhindert, und damit die Entstehung von beatmungsassozierten Pneumonien unterbunden werden. Die lipidmodifizierten Microtiterplatten sollen zukünftig auch genutzt werden, um sphingolpidaffine Proteine aus Zelllysaten zu identifizieren. / Sphingolipids play an essential role in the control of viral and bacterial infections[335-336], therefore sphingolipids and analogues shift into the focus of pharmaceutical research as active ingredients against various pathogens.[9] Also click chemistry is used for synthesis and screening of potential drugs.[224] The mode of action of sphingolipid based pharmaceuticals in viral and microbial pathogenesis is not yet fully understood.
By using CuAAC[112-113] and their modern variants and alternatives – summarized in the term click chemistry – it is possible to minimise the structural alterations of biomolecules and still use them in fluorescence spectroscopy after labeling. [339-340] While modification of proteins[130], carbohydrates[341] and DNA[340] via click chemistry has been widely used in recent years, lipids have remained unaffected for a long time, especially sphingolipids.[342]
In this Work biorthogonal functionalised sphingolipids and analogues are presented, that transfer the versatility of the click chemistry to the field of sphingolipids. Furthermore, the clickable lipid analogues allow a detailed view into the dynamic organisation of sphingolipids in infection processes and in addition their use as therapeutic agents or for the generation of antibacterial surface coatings were investigated.
The synthesized azide modified sphingolipids and analogues were evaluated for the use in visualisation experiments and their antibacterial properties were evaluated within several cooperation projects.
The ceramide derivatives were used to evaluate the influence of acylated chain length and azide position in regard to in vivo labeling with the fluorescence dye DBCO-Sulfo-Cy5 in jurkat cells.[211]
Furthermore, ceramide dynamics during T-cell stimulation were investigated by labeling azide functionalised ceramides.[205] In this context visualisable ceramides are of particular interest due T-cell stimulation results in ASM-activation, which again releases ceramides.
With the azide modified phytosphingosine derivative, an azide modified sphingolipid was labelled via CuAAC after incubation of arabidoopsis thailana seedlings for the first time[258]
Furthermore, azide functionalised N-Oleoyl serinols were successfully incorporated within different cell types and selectively visualised by labelling. Colocalization studies with GFP-PKCζ and anti body labeling of ceramide as well as PKCζ proved to be ceramide mimicking lipid analogues
Many natural sphingolipids show antibacterial behaviour, therefore the use of azide modified ceramides as active ingredients against Neisseria meningitidis, Neisseria gonorrhoeae sowie Escherichia coli und Staphylococcus aureus were investigated in cooperation with Jérôme Becam ωN3-C6-Cer shows good bactericidal properties against Neisseria meningitidis and Neisseria gonorrhoeae without being toxic against host cells. The ceramide analogues αN3-C6-Cer, αN3-C16-Cer and ωN3-C16-Cer show no antibacterial properties, but they were also efficiently incorporated into the membrane of Neisseriae and can be used biorthogonal labelling. Furthermore, in contrast to human cells high resolution dSTORM-images show an evenly distribution of labelled ceramides in bacteria cells. Since ceramides play an important role in the fight against infections the ceramides synthesised in this work are valuable tools to investigate the interaction of bacteria with human cells.
Also an innovative method was established within this thesis to modify the surface of Nunc Covalink 96 Wellplates with alkyne presenting linkers followed by the conjugation of the azide modified lipids presented in this work via CuAAC. This method is intended to be used for screening of potential molecules for antibacterial surface modifications. In the future this kind of surface modifications are expected to prevent the biofilm formation in endotracheal tubes and prohibit the formation of ventilator-associated pneumonia. In Addition the lipid modified microtiter plates are also intended to be used to identify sphingolipid affine proteins from cell lysate.
|
5 |
The impact of sphingolipids on \(Neisseria\) \(meningitidis\) and their role in meningococcal pathogenicity / Einfluss von Sphingolipiden auf \(Neisseria\) \(meningitidis\) und deren Bedeutung für die PathogenitätPeters, Simon January 2021 (has links) (PDF)
The obligate human pathogen Neisseria meningitidis is a major cause of sepsis and meningitis worldwide. It affects mainly toddlers and infants and is responsible for thousands of deaths each year. In this study, different aspects of the importance of sphingolipids in meningococcal pathogenicity were investigated. In a first step, the acid sphingomyelinase (ASM), which degrades membrane sphingomyelin to ceramide, was studied in the context of meningococcal infection. A requirement for ASM surface activity is its translocation from the lysosomal compartment to the cell surface, a process that is currently poorly understood.
This study used various approaches, including classical invasion and adherence assays, flow cytometry, and classical and super resolution immunofluorescence microscopy (dSTORM). The results showed that the live, highly piliated N. meningitidis strain 8013/12 induced calcium-dependent ASM translocation in human brain microvascular endothelial cells (HBMEC). Furthermore, it promoted the formation of ceramide-rich platforms (CRPs). In addition, ASM translocation and CRP formation were observed after treating the cells with pili-enriched fractions derived from the same strain. The importance for N. meningitidis to utilize this pathway was shown by the inhibition of the calcium-dependent ASM translocation, which greatly decreased the number of invasive bacteria.
I also investigated the importance of the glycosphingolipids GM1 and Gb3. The results showed that GM1, but not Gb3, plays an important role in the ability of N. meningitidis to invade HBMEC. By combining dSTORM imaging and microbiological approaches, we demonstrated that GM1 accumulated prolifically around bacteria during the infection, and that this interaction seemed essential for meningococcal invasion.
Sphingolipids are not only known for their beneficial effect on pathogens. Sphingoid bases, including sphingosine, are known for their antimicrobial activity. In the last part of this study, a novel correlative light and electron microscopy approach was established in the combination with click chemistry to precisely localize azido-functionalized sphingolipids in N. meningitidis. The result showed a distinct concentration-dependent localization in either the outer membrane (low concentration) or accumulated in the cytosol (high concentration). This pattern was confirmed by mass spectrometry on separated membrane fractions. Our data provide a first insight into the underlying mechanism of antimicrobial sphingolipids. / Der obligate Humanpathogen Neisseria meningitidis ist weltweit einer der Hauptursachen für Sepsis und Meningitis. Er befällt vor allem Kleinkinder und Säuglinge und ist jedes Jahr für Tausende von Todesfällen verantwortlich. In dieser Studie wurden verschiedene Aspekte der Bedeutung von Sphingolipiden bei der Pathogenität von Meningokokken untersucht. In einem ersten Schritt wurde die saure Sphingomyelinase (ASM), die Membran-Sphingomyelin zu Ceramid abbaut, im Zusammenhang mit einer Meningokokken-Infektion untersucht. Eine Voraussetzung für die Oberflächenaktivität der ASM ist ihre Translokation vom lysosomalen Kompartiment auf die Zelloberfläche, ein Prozess, der derzeit noch wenig verstanden wird.
In dieser Studie wurden verschiedene Ansätze verwendet, darunter klassische Invasions- und Adhärenztests, Durchflusszytometrie sowie klassische und superauflösende Immunfluoreszenzmikroskopie (dSTORM). Die Ergebnisse zeigten, dass der lebende, hochpiliatisierte N. meningitidis Stamm 8013/12 eine kalziumabhängige ASM-Translokation in mikrovaskulären Endothelzellen des menschlichen Gehirns (HBMEC) induzierte. Des Weiteren förderte er die Bildung Ceramid-reicher Plattformen (CRPs). Zusätzlich wurden ASM-Translokation und CRP-Bildung beobachtet, nachdem die Zellen mit pili-angereicherten Fraktionen desselben Stammes behandelt worden waren. Die Bedeutung für N. meningitidis in der Pathogenese zeigte sich durch die Hemmung der Calcium-abhängigen ASM-Translokation, wodurch die Zahl der invasiven Bakterien stark reduziert wurde.
Ich untersuchte auch die Bedeutung der Glykosphingolipide GM1 und Gb3. Die Ergebnisse zeigten, dass GM1, aber nicht Gb3, eine wichtige Rolle bei der Fähigkeit von N. meningitidis spielt, in Gehirnendothelzellen einzudringen. Durch die Kombination von dSTORM-Bildgebung und mikrobiologischen Ansätzen konnten wir zeigen, dass sich GM1 während der Infektion vermehrt um die Bakterien herum anreicherte und dass diese Interaktion für die Invasion von Meningokokken essenziell ist.
Sphingolipide sind nicht nur für ihre positive Wirkung auf Krankheitserreger bekannt. Sphingoidbasen, einschließlich Sphingosin, sind zusätzlich für ihre antimikrobielle Aktivität bekannt. Im letzten Teil dieser Studie wurde ein neuartiger korrelativer licht- und elektronenmikroskopischer Ansatz in der Kombination mit Click-Chemie etabliert, um azidofunktionalisierte Sphingolipide in N. meningitidis genau zu lokalisieren. Das Ergebnis zeigte eine deutliche konzentrationsabhängige Lokalisation entweder in der äußeren Membran (niedrige Konzentration) oder akkumuliert im Zytosol (hohe Konzentration). Dieses Muster konnte durch einen Massenspektrometrischen Ansatz bestätigt werden. Hierfür wurde eine Separation der inneren und äußeren Membran, nach Behandlung mit der niedrigen Konzentration, etabliert. Die verschiedenen Membranfraktionen wurden anschließend auf ihren Gehalt an funktionalisierten Sphingolipiden hin untersucht und bestätigten die lokalisierung in der äußeren Membran. Unsere Daten geben einen ersten Einblick in den zugrundeliegenden Mechanismus der antimikrobiellen Sphingolipide.
|
6 |
Sphingolipide – Analytik, Biosynthese und Funktion in der Arabidopsis thaliana Pathogenantwort / Sphingolipids – Analytics, Biosynthesis and Functions in the Arabidopsis thaliana Pathogen InteractionPeer, Markus January 2010 (has links) (PDF)
Sphingolipide (SPL) sind wichtige und ubiquitar verbreitete Bestandteile von Biomembranen. Aufgrund der enormen Vielfalt, der komplexen Struktur und diverser physiko-chemischer Eigenschaften der Sphingolipide gestaltet sich die qualitative und quantitative Untersuchung der Sphingolipide allerdings schwierig. In dieser Arbeit konnten, basierend auf publizierten Methoden, analytische Verfahren entwickelt werden, mit deren Hilfe sich die Gehalte spezifischer Sphingolipide in A. thaliana quantitativ nachweisen lassen. Unter Einsatz eines targeted metabolite profiling-Ansatzes wurde die Rolle spezifischer Sphingolipide in der Pflanzen-Pathogen Interaktion charakterisiert. Infiltration von avirulenten P. syringae pv. tomato (Pst) in Blätter von A. thaliana führte zu schnell und transient erhöhten Gehalten der freien Sphingobase Phytosphingosin (t18:0). Im Gegensatz zu avirulenten Pst kam es nach Infiltration von virulenten Pst zu einer schnellen Rückkehr auf Basalniveau und nicht zu einer hypersensitiven Antwort (HR), was auf eine positiv regulatorische Rolle von t18:0 in Abwehrreaktionen von Pflanzen hinwies, z.B. bei der HR. Damit konnte in der vorliegenden Arbeit zum ersten Mal gezeigt werden, dass die Spiegel freier Sphingobasen der Pflanze, insbesondere von t18:0, in Antwort auf bakterielle Pathogene reguliert werden. Diese spezifische Regulation korreliert, in Abhängigkeit von der Pathogeninfektion, mit dem Verlauf der HR. Im Unterschied zu avirulenten Stämmen sind virulente Pst in der Lage, Abwehrreaktionen des Wirtsorganismus zu unterdrücken. Daher tritt keine HR auf, welche die Ausbreitung des Pathogens stoppen könnte. Die unterschiedliche Beeinflussung der t18:0 Gehalte virulenter und avirulenter Stämme zeigte sich auch in Experimenten mit einem anderen P. syringae Stamm. Freie Sphingobasen zeigten in dieser Arbeit typische Merkmale von Signalmolekulen: geringe basale Spiegel, schnelle und transiente Gehaltsanderungen, präzise Regulation sowie spezifische Wirkeffekte. Sphingolipide stellen somit, neben den etwa durch PAMPs ausgelösten und durch Phytohormone vermittelten, weitere Signalwege in der Pflanzen Pathogen Interaktion dar. Die Infiltration von Pst in Blätter der A. thaliana Mutante sbh1-1 führte zu transient erhöhten d18:0 Spiegeln. In dieser Mutante ist die Funktion von einer der zwei Sphingobasen-Hydroxylasen gestört. Wie sich nach Totalhydrolyse zeigte, sind die Gesamtgehalte von t18:0 in der Mutante allerdings nicht reduziert. Dies spricht dafür, dass der pathogenabhängige transiente Anstieg von t18:0 durch de novo Synthese aus d18:0 entsteht und nicht durch Freisetzung aus komplexen Sphingolipiden mittels spezifischer Lipasen. Somit ist die Hydroxylase SBH1 für den schnellen signalvermittelten Anstieg von t18:0 verantwortlich. Neben t18:0 lösen auch strukturell ähnliche freie Sphingobasen, z.B. d18:1 und d18:0, Abwehrreaktionen und Zelltod aus, während andere Sphingobasen (d20:0 und d20:1) sowie Ceramide keine Reaktionen auslösten. Dies weist auch direkt auf die Spezifität der beteiligten Mechanismen hin. / Sphingolipids (SPL) are important and ubiquitously distributed constituents of biological membranes. Due to the tremendous variety, complex structure and diverse physicochemical properties of sphingolipids, qualitative and quantitative analysis has only recently been possible due to newly developed methods in mass spectrometry and chromatography. In this work, analytical methods to quantitatively detect the SPL content in A. thaliana leaves were established based on published literature. Using a targeted metabolic profiling approach, the role of specific SPL in the plant‐pathogen interaction was characterized. In line with the production of reactive oxygen species (ROS), a hallmark of biotic stress, infiltration of the avirulent form of the phytopathogen P. syringae pv. tomato (Pst) led to a fast and transient increase of the free long chain base Phytosphingosine (t18:0). Virulent Pst showed also a fast and transient, but clearly less prolonged elevation of t18:0 levels. Also, no HR was elicited in response to the infiltration, pointing to a positive regulatory role of t18:0 in this plant defense response. This work shows, for the first time, that SPL, namely t18:0, were regulated in response to bacterial pathogens. The t18:0 kinetics showed a strong correlation with the course of the pathogen‐elicited HR. There was also evidence, that virulent Pst influences the plants own biosynthetic and regulatory mechanisms to inhibit the SPL mediated defense response. This was also the case with another tested Pseudomonas syringae strain. In this work, free long chain bases showed characteristics typical for signaling molecules: low basal levels, a fast and transient increase in response to pathogens and a tight regulation. Hence, SPL may represent members of signaling pathways in plant‐pathogen interactions in addition to or besides PAMP‐triggered and hormonal mediated signaling pathways. Infiltration of Pst into leaves of the A. thaliana hydroxylase mutant sbh1-1 led to transiently increased d18:0 levels in leaves. In this mutant, one of the two functional sphingobase hydroxylases of A. thaliana is impaired. As the total pool of t18:0 was not significantly reduced in the mutant after total hydrolysis, we argue that the pathogen‐dependent transient increase of t18:0 was due to de novo synthesis from d18:0 and not to the action of specific lipases. Furthermore SBH1 was responsible for the fast increase of t18:0 levels. In addition to t18:0, also other free long chain bases, e.g. d18:0, elicited plant reactions and cell death, whereas other long chain bases (d20:0 and d20:1) or ceramides elicited no response. Apparently, the specific lipid structure plays a major role for the efficiency in different signaling pathways.
|
7 |
Die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion / The role of sphingobases in plant cell death reactionGlenz, René January 2019 (has links) (PDF)
Sphingobasen bilden das Grundgerüst und die Ausgangsbausteine für die Biosynthese von Sphingolipiden. Während komplexere Sphingolipide einen wichtigen Bestandteil von eukaryotischen Membranen bilden, sind Sphingobasen, die auch als long-chain bases (LCBs) bezeichnet werden, als Signalmoleküle bei zellulären Prozessen in Eukaryoten bekannt. Im tierischen System wurden antagonistische Effekte von nicht-phosphorylierten Sphingobasen (LCBs) und ihren phosphorylierten Gegenstücken (LCB-Ps) bei vielen Zellfunktionen, insbesondere der Apoptose, nachgewiesen und die zugrundeliegenden Signalwege umfassend aufgeklärt. Im Gegensatz dazu sind in Pflanzen weniger Belege für einen antagonistischen Effekt und mögliche Signaltransduktionsmechanismen bekannt. Für eine regulatorische Funktion von Sphingobasen beim programmierten Zelltod (PCD) in Pflanzen existieren mehrere Hinweise: (I) Mutationen in Genen, die den Sphingobasen-Metabolismus betreffen, führen zum Teil zu spontanem PCD und veränderten Zelltodreaktionen. (II) Die Gehalte von LCBs sind bei verschiedenen Zelltod-auslösenden Bedingungen erhöht. (III) Nekrotrophe Pathogene produzieren Toxine, wie Fumonisin B1 (FB1), die mit dem Sphingolipid-Metabolismus der Wirtspflanze interferieren, was wiederum die Ursache für den dadurch ausgelösten PCD darstellt. (IV) Die Behandlung von Pflanzen mit LCBs, nicht aber mit LCB-Ps, führt zu Zelltod.
In dieser Arbeit wurde die Rolle von Sphingobasen in der pflanzlichen Zelltodreaktion untersucht, wobei der Fokus auf der Überprüfung der Hypothese eines antagonistischen, Zelltod-hemmenden Effekts von LCB-Ps lag. Anhand von Leitfähigkeit-basierten Messungen bei Blattscheiben von Arabidopsis thaliana wurde der durch Behandlung mit LCBs und separater oder gleichzeitiger Zugabe von LCB-Ps auftretende Zelltod bestimmt. Mit dieser Art der Quantifizierung wurde der an anderer Stelle publizierte inhibierende Effekt von LCB-Ps auf den LCB-induzierten Zelltod nachgewiesen. Durch parallele Messung der Spiegel der applizierten Sphingobasen im Gewebe mittels HPLC-MS/MS konnte dieser Antagonismus allerdings auf eine reduzierte Aufnahme der LCB bei Anwesenheit der LCB-P zurückgeführt werden, was auch durch eine zeitlich getrennte Behandlung mit den Sphingobasen bestätigt wurde. Darüber hinaus wurde der Einfluss einer exogenen Zugabe von LCBs und LCB-Ps auf den durch Pseudomonas syringae induzierten Zelltod von A. thaliana untersucht. Für LCB-Ps wurde dabei kein Zelltod-hemmender Effekt beobachtet, ebenso wenig wie ein Einfluss von LCB-Ps auf den PCD, der durch rekombinante Expression und Erkennung eines Avirulenzproteins in Arabidopsis ausgelöst wurde. Für LCBs wurde dagegen eine direkte antibakterielle Wirkung im Zuge der Experimente mit P. syringae gezeigt, die den in einer anderen Publikation beschriebenen inhibierenden Effekt von LCBs auf den Pathogen-induzierten Zelltod in Pflanzen relativiert.
In weiteren Ansätzen wurden Arabidopsis-Mutanten von Enzymen des Sphingobasen-Metabolismus (LCB-Kinase, LCB-P-Phosphatase, LCB-P-Lyase) hinsichtlich veränderter in-situ-Spiegel von LCBs/LCB-Ps funktionell charakterisiert. Der Phänotyp der Mutanten gegenüber Fumonisin B1 wurde zum einen anhand eines Wachstumstests mit Keimlingen und zum anderen anhand des Zelltods von Blattscheiben bestimmt und die dabei akkumulierenden Sphingobasen quantifiziert. Die Sensitivität der verschiedenen Linien gegenüber FB1 korrelierte eng mit den Spiegeln der LCBs, während hohe Gehalte von LCB-Ps alleine nicht in der Lage waren den Zelltod zu verringern. In einzelnen Mutanten konnte sogar eine Korrelation von stark erhöhten LCB-P-Spiegeln mit einer besonderen Sensitivität gegenüber FB1 festgestellt werden.
Die Ergebnisse der vorliegenden Arbeit stellen die Hypothese eines antagonistischen Effekts von phosphorylierten Sphingobasen beim pflanzlichen Zelltod in Frage. Stattdessen konnte in detaillierten Analysen der Sphingobasen-Spiegel die positive Korrelation der Gehalte von LCBs mit dem Zelltod gezeigt werden. Die hier durchgeführten Experimente liefern damit nicht nur weitere Belege für die Zelltod-fördernde Wirkung von nicht-phosphorylierten Sphingobasen, sondern tragen zum Verständnis der Sphingobasen-Homöostase und des Sphingobasen-induzierten PCD in Pflanzen bei. / Sphingobases are the building blocks for the biosynthesis of sphingolipids. While complex sphingolipids form a major part of eukaryotic membranes, sphingobases, which are also called long-chain bases (LCBs), are well-known signaling molecules of cellular processes in eukaryotes. In the animal system, antagonistic effects of nonphosphorylated sphingobases (LCBs) and their phosphorylated counterparts (LCB-Ps) have been reported in many cell functions, with a particular focus on apoptosis, and the underlying signaling pathways have been elucidated in detail. In contrast, few records of an antagonistic effect and the potential signal transduction mechanisms have been established in plants. Several lines of evidence point to a regulatory function of sphingobases in plant programmed cell death (PCD): (i) Mutations in genes related to sphingobase metabolism may cause spontaneous PCD and altered cell death reactions. (ii) Levels of LCBs are increased under different cell death conditions. (iii) Necrotrophic pathogens produce toxins, like fumonisin B1 (FB1), interfering with sphingolipid metabolism of the host plant and, thus, causing PCD. (iv) Treatment of plants with LCBs, but not LCB-Ps, induces cell death.
In the present study the role of sphingobases in plant cell death reactions, with a focus on the examination of the hypothesis of an antagonistic cell death-inhibitory effect of LCB-Ps, has been investigated. Using conductivity-based measurements of Arabidopsis thaliana leaf discs, cell death induced by treatment with LCBs and separated or combined feeding of LCB-Ps was determined. That kind of quantification allowed the verification of an inhibitory effect of LCB-Ps on LCB-induced cell death, which was published elsewhere. However, by simultaneous measurement of the applied sphingobase levels in the tissue with HPLC-MS/MS, this antagonism could be explained by a reduced uptake of the LCB in the presence of the LCB-P, which was also confirmed by a separated treatment with the sphingobases. In addition to that an impact of exogenous applied LCBs and LCB-Ps on cell death in A. thaliana induced by Pseudomonas syringae has been investigated. For LCB-Ps no cell death inhibitory effect was observed. Similarly, there was no impact for LCB-Ps on the cell death induced by recombinant expression of an avirulence protein in Arabidopsis. For LCBs, a direct antibacterial effect against P. syringae was shown in this work. This puts previous findings of an inhibitory effect of LCBs on pathogen-induced cell death in plants into a new perspective.
In further approaches, Arabidopsis mutants of enzymes of the sphingobase metabolism (LCB kinase, LCB-P phosphatase, LCB-P lyase) were functionally characterized with regard to altered in situ levels of LCBs/LCB-Ps. The phenotype of the mutants in response to fumonisin B1 was determined in a growth assay with seedlings, and by cell death measurements in leaf discs, which were accompanied by quantification of sphingobase levels. The sensitivity of different lines to FB1 was closely correlated with the levels of LCBs, while high contents of LCB-Ps alone were not able to reduce cell death. Some mutants even showed a correlation of highly enhanced LCB-P levels with a pronounced sensitivity to FB1.
The results of the present study challenge the hypothesis of an antagonistic effect of phosphorylated sphingobases on plant cell death. Instead, a detailed analysis of sphingobase levels revealed a positive correlation of LCB contents with cell death. The conducted experiments not only provide further evidence for a cell death-promoting effect of nonphosphorylated sphingobases, but also contribute to the comprehension of sphingobase homeostasis, as well as of the sphingobase-induced PCD in plants.
|
8 |
Auswirkungen des Sphingolipidsynthese-Inhibitors Myriocin auf Vitalität und Antimykotikaresistenz von \(Candida\) \(auris\) / Impact of the sphingolipid synthesis inhibitor myriocin on viability and antifungal susceptibility of \(Candida\) \(auris\)Stieber, Hanna January 2022 (has links) (PDF)
Candida Spezies gehören als kommensale Organismen zur normalen menschlichen Mikroflora, können allerdings unter bestimmten Bedingungen Krankheitswert erlangen. Limitationen in der Behandlung durch immer mehr resistente Candida Spezies und die wachsende Zahl immunsupprimierter Patienten gelten als Hauptursachen für die steigende Häufigkeit invasiver Candidosen und systemischer Candidämien. Die 2009 entdeckte Spezies C. auris stellt durch ihre zahlreichen Resistenzen, das Potential zur Auslösung nosokomialer Ausbrüche in Krankenhäusern und die schnelle Verbreitung über mehrere Kontinente eine neue Herausforderung dar. Der Bedarf an neuen Antimykotika mit anderen Wirkmechanismen und neuen Zielstrukturen ist größer denn je. Die fungale Sphingolipid-Biosynthese wurde bereits mehrfach als potenzielles Ziel antimykotischer Therapie diskutiert, allerdings bezieht sich die meiste Forschung hierzu auf C. albicans]. In vorliegender Arbeit wurden die Auswirkungen der Inhibition der Sphingolipid Biosynthese durch Myriocin auf C. auris und sein Resistenzverhalten untersucht und mit denen auf andere Candida Spezies verglichen.
Sowohl die Mikrodilution als auch die Plattentropftests zeigten, dass C. auris verglichen mit anderen Candida Spezies besonders sensitiv auf die Anwesenheit von Myriocin reagierte und stärker im Wachstum gehemmt wurde. Der Survival Assay ergab für alle drei Spezies ein Absenken der CFU durch Myriocin, die Abweichungen zwischen den Stämmen waren jedoch unwesentlich. Unterschiede konnten in Vitalität und Vermehrung der verschiedenen Spezies unter Myriocineinfluss festgestellt werden.
Aus der Lebend/Tot-Färbung ging hervor, dass Myriocin bei allen Stämmen zum Absterben von Candida Zellen führte, C. albicans und C. glabrata allerdings signifikant niedrigere Überlebensraten im Vergleich zu den C. auris Isolaten aufwiesen. Im Gegensatz dazu konnte mithilfe der FITC-Mikroskopie gezeigt werden, dass Candida Zellen unter Zugabe von Myriocin weniger Tochterzellen ausbildeten, was auf eine erschwerte oder zumindest verlangsamte Zellvermehrung hindeutet. Dabei schien das Wachstum der C. auris Stämme durch Myriocin deutlich eingeschränkter zu sein als das von C. albicans und C. glabrata. Durch weitere Mikroskopie und die Kombination aus Lebend/Tot Färbung mittels PI und FITC Färbung, sollte die Verteilung der toten Zellen auf Mutter- und Tochterzellen evaluiert werden. Hier konnte ein Trend zu einem vermehrten Zellsterben der Tochterzellen, vor allem für C. auris, festgestellt werden. Abschließende E-Tests für Amphotericin B, Anidulafungin und Fluconazol ergaben eine signifikante Herabsetzung der MHK für alle C. auris Isolate durch Myriocin. Die hier vorgestellten Ergebnisse und die durch mehrere Studien festgestellten Differenzen in der Sphingolipidkomposition von C. auris verglichen mit anderen Candida Spezies geben Hinweis darauf, dass Sphingolipide für Vitalität, Zellteilung und vor allem für die Wirkung einiger Antimykotika auf C. auris eine besondere, wenn nicht übergestellte Bedeutung haben könnten. Zwar wurde die Sphingolipidsynthese bereits mehrfach als potenzieller Angriffspunkt für die antifungale Therapie diskutiert, allerdings lediglich am Beispiel anderer Candida Spezies. Der Sphingolipidstoffwechsel könnte somit ein vielversprechender Ansatz für die Behandlung des sonst so therapieresistenten und lebensbedrohlichen Pilzes C. auris sein. / Candida species are commensal organisms belonging to the normal human microflora, but can become pathogenic under certain conditions. Limitations in treatment due to an increasing number of resistant Candida species and the growing number of immunosuppressed patients are considered to be the main reasons for the increasing frequency of invasive candidiasis and systemic candidemia. C. auris, a species discovered in 2009, shows potential to cause nosocomial outbreaks in hospitals, limited susceptibility to numerous antifungals and a rapid spread across several continents. This leads to a need for new antifungal agents with different mechanisms of action and new targets. Fungal sphingolipid biosynthesis has been discussed several times as a potential target of antifungal therapy, however most research on this relates to C. albicans. In the present work, the effects of inhibition of sphingolipid biosynthesis by myriocin on C. auris and its impact on fungal susceptibility were investigated and compared with those on other Candida species.
Both microdilution and plate droplet assays showed that C. auris was more sensitive to myriocin compared with other Candida species and showed severe growth defects. The survival assay showed a lowering of CFU by myriocin for all three species, but the differences between the strains were insignificant.
Live/dead staining showed that myriocin led to the death of Candida cells in all strains, but C. albicans and C. glabrata had significantly lower survival rates compared to the C. auris isolates. In contrast, FITC microscopy showed that Candida cells produced fewer daughter cells when myriocin was added, indicating that cell proliferation was impeded or at least slowed. In this regard, the growth of C. auris strains appeared to be significantly more restricted by myriocin than that of C. albicans and C. glabrata. Further microscopy and the combination of live/dead staining using PI and FITC staining, was performed to evaluate the distribution of dead cells between mother and daughter cells. Here, a trend towards increased cell death of daughter cells, especially for C. auris, was observed. Final E-tests for amphotericin B, anidulafungin, and fluconazole revealed a significant reduction in MIC for all C. auris isolates by myriocin. These results and the differences in sphingolipid composition of C. auris compared with other Candida species established by several studies provide evidence that sphingolipids may have a special, if not superimposed, importance for viability, cell division, and especially for the suscteptibility of C. auris to some antifungals. It is true that sphingolipid synthesis has been discussed several times as a potential target for antifungal therapy, but only using other Candida species as examples. Sphingolipid metabolism could thus be a promising approach for the treatment of the therapy-resistant and life-threatening fungus C. auris.
|
9 |
Wirkmechanismus von Sphingolipiden und Sphingosin gegen mikrobielle Erreger / Mechanism of the bactericidal effect of sphingolipids and sphingosine against microbial pathogensKaiser, Lena Franziska January 2020 (has links) (PDF)
Die zunehmende Antibiotikaresistenz vieler Krankheitserreger ist ein weltweites Problem, welches zu einem klinischen Bedarf an neuen antimikrobiellen Substanzen führt. Sphingolipide einschließlich Ceramide stellen eine vielfältige Gruppe strukturverwandter Lipide dar und bestehen aus einem Sphingosin-Grundgerüst, welches mit einer Fettsäure verbunden ist. Sowohl das Sphingosin-Grundgerüst allein als auch Sphingolipide zeigen eine antibakterielle Wirkung gegenüber einer Vielzahl pathogener Mikroorganismen. Die Intensität der Hemmung hängt von der Sphingolipidstruktur und dem Mikroorganismus ab. Neuere Studien konnten zeigen, dass Sphingosin, Ceramide und Ceramid-Analoga in N. meningitidis aufgenommen werden und eine bakteriostatische oder bakterizide Wirkung zeigen. Jedoch ist die antibakterielle Wirkungsweise noch nicht genau bekannt. Um mehr über den Wirkmechanismus zu erfahren haben wir die ultrastrukturellen Veränderungen von N. meningitidis nach Inkubation mit azido-funktionalisierten Sphingolipiden mit elektronenmikroskopischen Verfahren (transmissionselektronenmikroskopische und rasterelektronenmikroskopische Aufnahmen) untersucht. Mittels korrelativer Licht- und Elektronenmikroskopie (CLEM) konnten wir die azido-funktionalisierten Sphingolipide nach Aufnahme in N. meningitidis lokalisieren. Zum Anfärben der funktionalisierten Sphingolipide wurde die kupferfreie Azid-Alkin-Cyccloaddition verwendet. / The increasing antibiotic resistance of many pathogens is a worldwide problem that leads to a clinical need of new anti-microbial compounds. Sphingolipids, including ceramides, represent a diverse group of structurally related lipids and are composed of a sphingosine backbone coupled to a fatty acid. Solely the sphingosine backbone as well as the sphingolipids show antibacterial activity against a wide range of pathogenic microorganisms. The rate of inhibition depends on the sphingolipid structure and the microbial strain. Recent studies revealed the uptake of sphingosine, ceramides and ceramide analogues by N. meningitidis and a bacteriostatic or bactericidal effect. However, the mechanism of the bactericidal effect is still unknown. To elucidate the antibacterial mechanism, we studied the ultrastructural changes after incubation of N. meningitidis with azido-modified sphingolipids by using electron microscopy techniques (transmission electron microscopy (TEM) and scanning electron microscopy (SEM). Due to correlative light-electron microscopy (CLEM) we were able to localize the azido-modified sphingolipids after incorporation in N. meningitidis. Copper-free azide-alkyne cycloaddition was used to stain the azido-modified sphingolipids.
|
10 |
Super-Resolution Microscopy of Sphingolipids and Protein Nanodomains / Hochaufgelöste Mikroskopie von Sphingolipiden und Protein NanodomänenSchlegel, Jan January 2021 (has links) (PDF)
The development of cellular life on earth is coupled to the formation of lipid-based biological membranes. Although many tools to analyze their biophysical properties already exist, their variety and number is still relatively small compared to the field of protein studies. One reason for this, is their small size and complex assembly into an asymmetric tightly packed lipid bilayer showing characteristics of a two-dimensional heterogenous fluid. Since membranes are capable to form dynamic, nanoscopic domains, enriched in sphingolipids and cholesterol, their detailed investigation is limited to techniques which access information below the diffraction limit of light. In this work, I aimed to extend, optimize and compare three different labeling approaches for sphingolipids and their subsequent analysis by the single-molecule localization microscopy (SMLM) technique direct stochastic optical reconstruction microscopy (dSTORM). First, I applied classical immunofluorescence by immunoglobulin G (IgG) antibody labeling to detect and quantify sphingolipid nanodomains in the plasma membrane of eukaryotic cells. I was able to identify and characterize ceramide-rich platforms (CRPs) with a size of ~ 75nm on the basal and apical membrane of different cell lines. Next, I used click-chemistry to characterize sphingolipid analogs in living and fixed cells. By using a combination of fluorescence microscopy and anisotropy experiments, I analyzed their accessibility and configuration in the plasma membrane, respectively. Azide-modified, short fatty acid side chains, were accessible to membrane impermeable dyes and localized outside the hydrophobic membrane core. In contrast, azide moieties at the end of longer fatty acid side chains were less accessible and conjugated dyes localized deeper within the plasma membrane. By introducing photo-crosslinkable diazirine groups or chemically addressable amine groups, I developed methods to improve their immobilization required for dSTORM. Finally, I harnessed the specific binding characteristics of non-toxic shiga toxin B subunits (STxBs) and cholera toxin B subunits (CTxBs) to label and quantify glycosphingolipid nanodomains in the context of Neisseria meningitidis infection. Under pyhsiological conditions, these glycosphingolipids were distributed homogenously in the plasma membrane but upon bacterial infection CTxB detectable gangliosides accumulated around invasive Neisseria meningitidis. I was able to highlight the importance of cell cycle dependent glycosphingolipid expression for the invasion process. Blocking membrane accessible sugar headgroups by pretreatment with CTxB significantly reduced the number of invasive bacteria which confirmed the importance of gangliosides for bacterial uptake into cells. Based on my results, it can be concluded that labeling of sphingolipids should be carefully optimized depending on the research question and applied microscopy technique. In particular, I was able to develop new tools and protocols which enable the characterization of sphingolipid nanodomains by dSTORM for all three labeling approaches. / Die Entwicklung von zellulären Lebensformen auf der Erde basiert auf der Entstehung biologischer Lipid-Membranen. Obwohl viele Techniken zur Verfügung stehen, welche es erlauben deren biophysikalische Eigenschaften zu untersuchen, sind die Möglichkeiten, verglichen mit der Analyse von Proteinen, eher eingeschränkt. Ein Grund hierfür, ist die geringe Größe von Lipiden und deren komplexe Zusammenlagerung in eine asymmetrische dicht gepackte Lipiddoppelschicht, welche sich wie eine heterogene zweidimensionale Flüssigkeit verhält. Durch die lokale Anreicherung von Sphingolipiden und Cholesterol sind Membranen in der Lage dynamische, nanoskopische Domänen auszubilden, welche lediglich mit Techniken, welche die optische Auflösungsgrenze umgehen, detailliert untersucht werden können.
Ein wesentliches Ziel meiner Arbeit war es, drei Färbeverfahren für Sphingolipide zu vergleichen, erweitern und optimieren, um eine anschliessende Untersuchung mit Hilfe der einzelmolekülsensitiven Technik dSTORM (direct stochastic optical reconstruction microscopy) zu ermöglichen. Zunächst verwendete ich das klassische Färbeverfahren der Immunfluoreszenz, um Sphingolipid-Nanodomänen auf eukaryotischen Zellen mit Hilfe von Farbstoff-gekoppelten Antikörpern zu detektieren und quantifizieren. Dieses Vorgehen ermöglichte es mir, Ceramid-angereicherte Plattformen mit einer Größe von ~ 75nm auf der basalen und apikalen Membran verschiedener Zell-Linien zu identifizieren und charakterisieren.
Als nächstes Verfahren verwendete ich die Klick-Chemie, um Sphingolipid-Analoge in lebenden und fixierten Zellen zu untersuchen. Eine Kombination aus Fluoreszenz-Mikroskopie und Anisotropie-Messungen erlaubte es mir Rückschlüsse über deren Zugänglichkeit und Konfiguration innerhalb der Plasmamembran zu ziehen. Hierbei lokalisierten Azid-Gruppen am Ende kurzkettiger Fettsäurereste außerhalb des hydrophoben Membrankerns, wodurch sie mittels membran-undurchlässige Farbstoffe angeklickt werden konnten. Im Gegensatz dazu, waren Azide an längeren Fettsäureresten weniger zugänglich und konjugierte Farbstoffe tauchten tiefer in die Plasmamembran ein. Durch die Einführung photoreaktiver Diazirin-Gruppen oder chemisch modifzierbarer Amin-Gruppen wurden Wege geschaffen, welche eine Immobilisierung und anschließende Analyse mit Hilfe von dSTORM ermöglichen.
Schließlich nutzte ich das spezifische Bindeverhalten der nicht toxischen B Untereinheiten von Shiga- (STxB) und Cholera-Toxin (CTxB) aus, um Glycosphingolipid Nanodomänen im Kontext einer Neisseria meningitidis Infektion zu untersuchen. Unter physiologischen Bedingungen waren diese homogen in der Plasmamembran verteilt, jedoch reicherten sich CTxB-detektierbare Ganglioside um eindringende Bakterien an. Darüber hinaus konnte ich einen Zusammenhang zwischen der zellzyklusabhängigen Expression von Glycosphingolipiden und dem Eindringen der Bakterien herstellen. Eine Absättigung der Zucker an der äußeren Membran durch CTxB-Vorbehandlung reduzierte die Anzahl von invasiven Bakterien signifikant und bestätigte die Schlüsselrolle von Gangliosiden bei der Aufnahme von Bakterien.
Meine Ergebnisse legen Nahe, dass das Färbeverfahren für Sphingolipide an die jeweilige Fragestellung und Mikroskopietechnik angepasst werden sollte. Im Rahmen dieser Arbeit konnten neue Werkzeuge und Protokolle geschaffen werden, die die Charakterisierung von Sphingolipid-Nanodomänen mittels dSTORM für alle drei Färbeverfahren ermöglichen.
|
Page generated in 0.0496 seconds