Spelling suggestions: "subject:"koherens"" "subject:"koherensie""
1 |
Gossiping electrons : Strong decoherence from screeningLangueville, Felix January 2022 (has links)
In a strongly correlated material the localized electrons, typically the electrons in the 3d-orbitals, become entangled with each other through the Coulomb interaction. However, these electrons also interact with more mobile (itinerant) electrons in the s- and p-orbitals. The latter process called screening as it effectively reduces the strength of the interaction between the 3d-electrons. A less studied and often neglected effect of the screening is that it also entangles the 3d-electrons with the itinerant electrons, which is equivalent to a leakage of quantum information from the 3delectrons to the environment. This process leads to decoherence since it causes the 3d-electrons to effectively lose some of their quantum mechanical properties. But what does this mean for our understanding of strongly correlated materials and can this decoherence effect be of such magnitude that neglecting it may qualitatively affect the calculated material properties? This is the question this report tries to answer, but for a minimal impurity model consisting of an atom and a few surrounding bath orbitals. / I korrelerade atomer kan lokaliserade elektroner, som elektroner i 3d orbitaler, bli kvantmekaniskt sammanflätade med varandra genom coulomb-växelverkan. Dessa elektroner kan även växelverka med mer mobila elektroner, som elektroner i s- och p-orbitaler. Denna process kallas för skärmning eftersom den effektivt sätt reducerar styrkan på repulsionen mellan elektronerna i 3d-orbitalerna. En mindre känd och ofta ignorerad effekt från skärmningen är att elektronerna i 3d-orbitalerna blir kvantmekaniskt sammanflätade med de mobila elektronerna på ett irreversibelt sätt. Detta är ekvivalent med att information om d-elektronernas position läcker ut till omgivningen. Denna informationsläcka kallas för dekoherens eftersom den ledertill att d-elektronerna förlorar en del av sina kvantmekaniska egenskaper. Frågan blir således vad dekoherens kan ha för betydelse för starkt korrelerade materials egenskaper. Kan denna effekt vara av sådan magnitud att det ger oss en helt felaktig bild om den negligeras? Detta är vad denna rapport syftar till att svara på.
|
2 |
Gravitational Decoherence in Macroscopic Quantum SystemsEngelhardt Önne, Niklas January 2023 (has links)
The problem of how quantum mechanics gives rise to classicality has been debated for more than a century. A commonly proposed solution is decoherence, i.e. the gradual decay of superpositions in open quantum systems due to their inevitable interaction with their environment. However, the ability of decoherence to account for all aspects of the classical world is often questioned. A recently proposed model suggests that decoherence can occur even in isolated composite systems subject to gravitational time dilation, something which has sparked a debate. In this thesis we attempt to identify the precise role of decoherence in the quantum-to-classical transition (QTCT) and then use the result to analyze the validity of the newly proposed time dilation-induced decoherence mechanism. We find that the problem of the QTCT can be divided into two parts and that decoherence solves the first of these whereas the second is unsolvable without fundamental modifications to quantum theory. Moreover, we argue that the effect is fundamentally frame-dependent and we find a general formula for the rate of decoherence of macroscopic superpositions in the case where both the system and observer use Rindler coordinates. The result suggests that the frame-dependence may be utilized to increase the strength of the effect in experimental settings. Finally, the possibilities of experimental verification are discussed and we argue that recent advances in quantum measurement techniques in gravitational-wave observatories may enable tests of gravitational decoherence in the near future, finally providing an empirical glimpse into the resolution of one of the most critical debates in all of physics. / Huruvida kvantfysiken kan ge uppkomst till den klassiska fysiken på stora skalor är ett problem som diskuterats under mer än ett århundrade. En föreslagen lösning är dekoherens, alltså det gradvisa sönderfallet av superpositioner i öppna kvantsystem på grund av den oundvikliga interaktionen med deras omgivning. Dekoherensens förmåga att förklara alla delar av den klassiska världen ifrågasätts emellertid fortfarande. De senaste åren har en ny effekt uppmärksammats som tyder på att dekoherens även kan uppstå i isolerade kompositsystem under påverkan av gravitationell tidsdilatation, något som orsakat en debatt i litteraturen. I detta arbete försöker vi identifiera dekoherensens roll i övergången från det kvantmekaniska till det klassiska, och vi använder sedan resultatet för att analysera den ovannämnda gravitationella dekoherensmekanismen. Det allmänna problemet med övergången från kvantfysik till klassisk fysik delas upp i två delar, och vi visar att dekoherens löser den första delen; den andra delen visar sig vara olösbar utan fundamentala förändringar av kvantfysikens ramverk. Vidare visas den gravitationella dekoherenseffekten vara observatörsberoende och vi härleder en allmän formel för takten med vilken makroskopiska superpositioner sönderfaller i de fall då både systemet och observatören använder Rindlerkoordinater. Resultaten tyder på att observatörsberoendet eventuellt kan utnyttjas för att öka effektens styrka i experimentalla sammanhang. Slutligen diskuteras möjligheter att experimentellt verifiera effekten; vi argumenterar för att nya genombrott inom kvantmätteknik i gravitationsvågsobservatorium kan möjliggöra tester av gravitationell dekoherens inom en snar framtid, vilket skulle ge oss en första empirisk inblick i lösningen till en av fysikens mest kritiska debatter.
|
Page generated in 0.0621 seconds