1 |
Adapting a delay-based protocol to heterogeneous environmentsKotla, Kiran 10 October 2008 (has links)
We investigate the issues in making a delay-based protocol adaptive to heterogeneous
environments. We assess and address the problems a delay-based protocol
faces when competing with a loss-based protocol such as TCP. We investigate if noise
and variability in delay measurements in environments such as cable and ADSL access
networks impact the delay-based protocol behavior significantly. We investigate these
issues in the context of incremental deployment of a new delay-based protocol, PERT.
We propose design modifications to PERT to compete with the TCP flavor SACK.
We show through simulations and real network experiments that, with the proposed
changes, PERT experiences lower drop rates than SACK and leads to lower overall
drop rates with different mixes of PERT and SACK protocols. Delay-based protocols,
being less aggressive, have problems in fully utilizing a highspeed link while operating
alone. We show that a single PERT flow can fully utilize a high-speed, high-delay link.
We performed several experiments with diverse parameters and simulated numerous
scenarios using ns-2. The results from simulations indicate that PERT can adapt
to heterogeneous networks and can operate well in an environment of heterogeneous
protocols and other miscellaneous scenarios like wireless networks (in the presence of channel errors). We also show that proposed changes retain the desirable properties
of PERT such as low loss rates and fairness when operating alone.
To see how the protocol performs with the real-world traffic, the protocol has
also been implemented in the Linux kernel and tested through experiments on live
networks, by measuring the throughput and losses between nodes in our lab at TAMU
and different machines at diverse location across the globe on the planet-lab.
The results from simulations indicate that PERT can compete with TCP in
diverse environments and provides benefits as it is incrementally deployed. Results
from real-network experiments strengthen this claim as PERT shows similar behavior
with the real-world traffic.
|
2 |
Distributed Control Approaches to Network OptimizationSah, Sankalp 2010 May 1900 (has links)
The objective of this research is to develop distributed approaches to optimizing
network traffic. Two problems are studied, which include exploiting social networks
in routing packets (coupons) to desired network nodes (users in the social network),
and developing a rate based transport protocol, which will guarantee that all the
flows in a network (e.g. Internet) meet a delay constraint per packet.
Firstly, we will study social networks as a means of obtaining information about
a system. They are increasingly seen as a means of obtaining awareness of user preferences.
Such awareness could be used to target goods and services at them. We
consider a general user model, wherein users could buy different numbers of goods
at a marked and at a discounted price. Our first objective is to learn which users
would be interested in a particular good. Second, we would like to know how much
to discount these users such that the entire demand is realized, but not so much that
profits are decreased. We develop algorithms for multihop forwarding of such discount
coupons over an online social network, in which users forward coupons to each
other in return for a reward. Coupling this idea with the implicit learning associated
with backpressure routing (originally developed for multihop wireless networks), we
would like to demonstrate how to realize optimal revenue. We will then propose a
simpler heuristic algorithm and try to show, using simulations, that its performance
approaches that of backpressure routing.
As the second problem, we look at the traditional formulation of the total value
of information transfer, which is a multi-commodity flow problem. Here, each data source is seen as generating a commodity along a fixed route, and the objective is
to maximize the total system throughput under some concept of fairness, subject
to capacity constraints of the links used. This problem is well studied under the
framework of network utility maximization and has led to several different distributed
congestion control schemes. However, this idea of value does not capture the fact that
flows might associate value, not just with throughput, but with link-quality metrics
such as packet delay, jitter and so on. The traditional congestion control problem is
redefined to include individual source preferences. It is assumed that degradation in
link quality seen by a flow adds up on the links it traverses, and the total utility is
maximized in such a way that the quality degradation seen by each source is bounded
by a value that it declares. Decoupling source-dissatisfaction and link-degradation
through an ?effective capacity? variable, a distributed and provably optimal resource
allocation algorithm is designed, to maximize system utility subject to these quality
constraints. The applicability of our controller in different situations is illustrated,
and results are supported through numerical examples.
|
3 |
Highly-efficient Low-Noise Buck Converters for Low-Power MicrocontrollersAhmed, Muhammad Swilam Abdelhaleem January 2018 (has links)
No description available.
|
Page generated in 0.0657 seconds