• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 48
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 75
  • 75
  • 75
  • 17
  • 13
  • 12
  • 12
  • 11
  • 11
  • 10
  • 10
  • 9
  • 9
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Numerical analysis of delay differential and integro-differential equations /

Zhang, Wenkui, January 1998 (has links)
Thesis (Ph.D.)--Memorial University of Newfoundland, 1999. / Bibliography: leaves 121-135.
22

Differential equations with state-dependent delay : global Hopf bifurcation and smoothness dependence on parameters /

Hu, Qingwen. January 2008 (has links)
Thesis (Ph.D.)--York University, 2008. Graduate Programme in Applied Mathematics. / Typescript. Includes bibliographical references (leaves 271-282). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&res_dat=xri:pqdiss&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&rft_dat=xri:pqdiss:NR51719
23

Spectral Solution Method for Distributed Delay Stochastic Differential Equations

René, Alexandre January 2016 (has links)
Stochastic delay differential equations naturally arise in models of complex natural phenomena, yet continue to resist efforts to find analytical solutions to them: general solutions are limited to linear systems with additive noise and a single delayed term. In this work we solve the case of distributed delays in linear systems with additive noise. Key to our solution is the development of a consistent interpretation for integrals over stochastic variables, obtained by means of a virtual discretization procedure. This procedure makes no assumption on the form of noise, and would likely be useful for a wider variety of cases than those we have considered. We show how it can be used to map the distributed delay equation to a known multivariate system, and obtain expressions for the system's time-dependent mean and autocovariance. These are in the form of series over the system's natural modes and completely define the solution. — An interpretation of the system as an amplitude process is explored. We show that for a wide range of realistic parameters, dynamics are dominated by only a few modes, implying that most of the observed behaviour of stochastic delayed equations is constrained to a low-dimensional subspace. — The expression for the autocovariance is given particular attention. A recurring problem for stochastic delay equations is the description of their temporal structure. We show that the series expression for the autocovariance does converge over a meaningful range of time lags, and therefore provides a means of describing this temporal structure.
24

Output Regulation of Systems Governed by Delay Differential Equations: Approximations and Robustness

Paruchuri, Sai Tej 08 April 2020 (has links)
This thesis considers the problem of robust geometric regulation for tracking and disturbance rejection of systems governed by delay differential equations. It is well known that geometric regulation can be highly sensitive to system parameters and hence such designs are not always robust. In particular, when employing numerical approximations to delay systems, the resulting finite dimensional models inherit natural approximation errors that can impact robustness. This demonstrates this lack of robustness and then addresses robustness by employing versions of robust regulation that have been developed for infinite dimensional systems. Numerical examples are given to illustrate the ideas and to test the robustness of the regulator. / M.S. / Recent years have seen a surge in the everyday application of complex mechanical and electrical systems. These systems can perform complex tasks; however, the increased complexity makes it harder to control them. An example of such a system is a semi-autonomous car designed to stay within a designated lane. One of the most commonly used approaches for controlling such systems is called output regulation. In the above example, the output regulator regulates the output of the car (position of the car) to follow the reference output (the road lane). Traditionally, the design of output regulators assumes complete knowledge of the system. However, it is impossible to derive equations that govern complex systems like a car. This thesis analyzes the robustness of output regulators in the presence of errors in the system. In particular, the focus is on analyzing output regulators implemented to delay-differential equations. These are differential equations where the rate of change of states at the current time depends on the states at previous times. Furthermore, this thesis addresses this problem by employing the robust versions of the output regulators.
25

Probabilistic Properties of Delay Differential Equations

Taylor, S. Richard January 2004 (has links)
Systems whose time evolutions are entirely deterministic can nevertheless be studied probabilistically, <em>i. e. </em> in terms of the evolution of probability distributions rather than individual trajectories. This approach is central to the dynamics of ensembles (statistical mechanics) and systems with uncertainty in the initial conditions. It is also the basis of ergodic theory--the study of probabilistic invariants of dynamical systems--which provides one framework for understanding chaotic systems whose time evolutions are erratic and for practical purposes unpredictable. Delay differential equations (DDEs) are a particular class of deterministic systems, distinguished by an explicit dependence of the dynamics on past states. DDEs arise in diverse applications including mathematics, biology and economics. A probabilistic approach to DDEs is lacking. The main problems we consider in developing such an approach are (1) to characterize the evolution of probability distributions for DDEs, <em>i. e. </em> develop an analog of the Perron-Frobenius operator; (2) to characterize invariant probability distributions for DDEs; and (3) to develop a framework for the application of ergodic theory to delay equations, with a view to a probabilistic understanding of DDEs whose time evolutions are chaotic. We develop a variety of approaches to each of these problems, employing both analytical and numerical methods. In transient chaos, a system evolves erratically during a transient period that is followed by asymptotically regular behavior. Transient chaos in delay equations has not been reported or investigated before. We find numerical evidence of transient chaos (fractal basins of attraction and long chaotic transients) in some DDEs, including the Mackey-Glass equation. Transient chaos in DDEs can be analyzed numerically using a modification of the "stagger-and-step" algorithm applied to a discretized version of the DDE.
26

Delayed effects and critical transitions in climate models

Quinn, C. January 2019 (has links)
There is a continuous demand for new and improved methods of understanding our climate system. The work in this thesis focuses on the study of delayed feedback and critical transitions. There is much room to develop upon these concepts in their application to the climate system. We explore the two concepts independently, but also note that the two are not mutually exclusive. The thesis begins with a review of delay differential equation (DDE) theory and the use of delay models in climate, followed by a review of the literature on critical transitions and examples of critical transitions in climate. We introduce various methods of deriving delay models from more complex systems. Our main results center around the Saltzman and Maasch (1988) model for the Pleistocene climate (`Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modelling the asymmetric response.' Global biogeochemical cycles, 2(2):177-185, 1988). We observe that the model contains a chain of first-order reactions. Feedback chains of this type limits to a discrete delay for long chains. We can then approximate the chain by a delay, resulting in scalar DDE for ice mass. Through bifurcation analysis under varying the delay, we discover a previously unexplored bistable region and consider solutions in this parameter region when subjected to periodic and astronomical forcing. The astronomical forcing is highly quasiperiodic, containing many overlapping frequencies from variations in the Earth's orbit. We find that under the astronomical forcing, the model exhibits a transition in time that resembles what is seen in paleoclimate records, known as the Mid-Pleistocene Transition. This transition is a distinct feature of the quasiperiodic forcing, as confi rmed by the change in sign of the leading nite-time Lyapunov exponent. Additional results involve a box model of the Atlantic meridional overturning circulation under a future climate scenario and time-dependent freshwater forcing. We find that the model exhibits multiple types of critical transitions, as well as recovery from potential critical transitions. We conclude with an outlook on how the work presented in this thesis can be utilised for further studies of the climate system and beyond.
27

DELAY DIFFERENTIAL EQUATIONS AND THEIR APPLICATION TO MICRO ELECTRO MECHANICAL SYSTEMS

Ospanov, Asset 01 January 2018 (has links)
Delay differential equations have a wide range of applications in engineering. This work is devoted to the analysis of delay Duffing equation, which plays a crucial role in modeling performance on demand Micro Electro Mechanical Systems (MEMS). We start with the stability analysis of a linear delay model. We also show that in certain cases the delay model can be efficiently approximated with a much simpler model without delay. We proceed with the analysis of a non-linear Duffing equation. This model is a significantly more complex mathematical model. For instance, the existence of a periodic solution for this equation is a highly nontrivial question, which was established by Struwe. The main result of this work is to establish the existence of a periodic solution to delay Duffing equation. The paper claimed to establish the existence of such solutions, however their argument is wrong. In this work we establish the existence of a periodic solution under the assumption that the delay is sufficiently small.
28

Bifurcation analysis of a system of Morris-Lecar neurons with time delayed gap junctional coupling

Kobelevskiy, Ilya January 2008 (has links)
We consider a system of two identical Morris-Lecar neurons coupled via electrical coupling. We focus our study on the effects that the coupling strength, γ , and the coupling time delay, τ , cause on the dynamics of the system. For small γ we use the phase model reduction technique to analyze the system behavior. We determine the stable states of the system with respect to γ and τ using the appropriate phase models, and we estimate the regions of validity of the phase models in the γ , τ plane using both analytical and numerical analysis. Next we examine asymptotic of the arbitrary conductance-based neuronal model for γ → +∞ and γ → −∞. The theory of nearly linear systems developed in [30] is extended in the special case of matrices with non-positive eigenvalues. The asymptotic analysis for γ > 0 shows that with appropriate choice of γ the voltages of the neurons can be made arbitrarily close in finite time and will remain that close for all subsequent time, while the asymptotic analysis for γ < 0 suggests the method of estimation of the boundary between “weak” and “strong” coupling.
29

Probabilistic Properties of Delay Differential Equations

Taylor, S. Richard January 2004 (has links)
Systems whose time evolutions are entirely deterministic can nevertheless be studied probabilistically, <em>i. e. </em> in terms of the evolution of probability distributions rather than individual trajectories. This approach is central to the dynamics of ensembles (statistical mechanics) and systems with uncertainty in the initial conditions. It is also the basis of ergodic theory--the study of probabilistic invariants of dynamical systems--which provides one framework for understanding chaotic systems whose time evolutions are erratic and for practical purposes unpredictable. Delay differential equations (DDEs) are a particular class of deterministic systems, distinguished by an explicit dependence of the dynamics on past states. DDEs arise in diverse applications including mathematics, biology and economics. A probabilistic approach to DDEs is lacking. The main problems we consider in developing such an approach are (1) to characterize the evolution of probability distributions for DDEs, <em>i. e. </em> develop an analog of the Perron-Frobenius operator; (2) to characterize invariant probability distributions for DDEs; and (3) to develop a framework for the application of ergodic theory to delay equations, with a view to a probabilistic understanding of DDEs whose time evolutions are chaotic. We develop a variety of approaches to each of these problems, employing both analytical and numerical methods. In transient chaos, a system evolves erratically during a transient period that is followed by asymptotically regular behavior. Transient chaos in delay equations has not been reported or investigated before. We find numerical evidence of transient chaos (fractal basins of attraction and long chaotic transients) in some DDEs, including the Mackey-Glass equation. Transient chaos in DDEs can be analyzed numerically using a modification of the "stagger-and-step" algorithm applied to a discretized version of the DDE.
30

Bifurcation analysis of a system of Morris-Lecar neurons with time delayed gap junctional coupling

Kobelevskiy, Ilya January 2008 (has links)
We consider a system of two identical Morris-Lecar neurons coupled via electrical coupling. We focus our study on the effects that the coupling strength, γ , and the coupling time delay, τ , cause on the dynamics of the system. For small γ we use the phase model reduction technique to analyze the system behavior. We determine the stable states of the system with respect to γ and τ using the appropriate phase models, and we estimate the regions of validity of the phase models in the γ , τ plane using both analytical and numerical analysis. Next we examine asymptotic of the arbitrary conductance-based neuronal model for γ → +∞ and γ → −∞. The theory of nearly linear systems developed in [30] is extended in the special case of matrices with non-positive eigenvalues. The asymptotic analysis for γ > 0 shows that with appropriate choice of γ the voltages of the neurons can be made arbitrarily close in finite time and will remain that close for all subsequent time, while the asymptotic analysis for γ < 0 suggests the method of estimation of the boundary between “weak” and “strong” coupling.

Page generated in 0.1097 seconds