• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

mRNA Levels of ERG, KVLQT1 and minK in Rabbit Right and Left Ventricles

LU, Zhibo, HOJO, Mayumi, YASUI, Kenji, KODAMA, Itsuo, KAMIYA, Kaichiro 12 1900 (has links)
国立情報学研究所で電子化したコンテンツを使用している。
2

Lipopolysaccharide Prolongs Action Potential Duration in HL-1 Mouse Cardiomyocytes

Wondergem, Robert, Graves, Bridget M., Li, Chuanfu, Williams, David L. 15 October 2012 (has links)
Sepsis has deleterious effects on cardiac function including reduced contractility. We have shown previously that lipopolysaccharides (LPS) directly affect HL-1 cardiac myocytes by inhibiting Ca2+ regulation and by impairing pacemaker "funny" current, If. We now explore further cellular mechanisms whereby LPS inhibits excitability in HL-1 cells. LPS (1 jxg/ml) derived from Salmonella enteritidis decreased rate of firing of spontaneous action potentials in HL-1 cells, and it increased their pacemaker potential durations and decreased their rates of depolarization, all measured by whole cell current clamp. LPS also increased action potential durations and decreased their amplitude in cells paced at 1 Hz with 0.1 nA, and 20 min were necessary for maximal effect. LPS decreased the amplitude of a rapidly inactivating inward current attributed to Na+ and of an outward current attributed to K+; both were measured by whole cell voltage clamp. The K+ currents displayed a resurgent outward tail current, which is characteristic of the rapid delayed-rectifier K+ current, Ikr. LPS accordingly reduced outward currents measured with pipette Cs+ substituted for K+ to isolate Ikr. E-4031 (1 (xM) markedly inhibited Ikr in HL-1 cells and also increased action potential duration; however, the direct effects of E-4031 occurred minutes faster than the slow effects of LPS. We conclude that LPS increases action potential duration in HL-1 mouse cardiomyocytes by inhibition of Ikr and decreases their rate of firing by inhibition of Ina. This protracted time course points toward an intermediary metabolic event, which either decreases available mouse ether-a-go-go (mERG) and Na+ channels or potentiates their inactivation.

Page generated in 0.1757 seconds