• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 455
  • 282
  • 19
  • 17
  • 6
  • 6
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 793
  • 234
  • 213
  • 179
  • 171
  • 166
  • 155
  • 155
  • 149
  • 146
  • 145
  • 144
  • 141
  • 139
  • 139
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Dynamic identification of structures: experimental assessment of modal parameteres through methods in frequency domain, in time-frequency domain and model updating

Belmonte, Claudia <1980> 31 May 2010 (has links)
Among the experimental methods commonly used to define the behaviour of a full scale system, dynamic tests are the most complete and efficient procedures. A dynamic test is an experimental process, which would define a set of characteristic parameters of the dynamic behaviour of the system, such as natural frequencies of the structure, mode shapes and the corresponding modal damping values associated. An assessment of these modal characteristics can be used both to verify the theoretical assumptions of the project, to monitor the performance of the structural system during its operational use. The thesis is structured in the following chapters: The first introductive chapter recalls some basic notions of dynamics of structure, focusing the discussion on the problem of systems with multiply degrees of freedom (MDOF), which can represent a generic real system under study, when it is excited with harmonic force or in free vibration. The second chapter is entirely centred on to the problem of dynamic identification process of a structure, if it is subjected to an experimental test in forced vibrations. It first describes the construction of FRF through classical FFT of the recorded signal. A different method, also in the frequency domain, is subsequently introduced; it allows accurately to compute the FRF using the geometric characteristics of the ellipse that represents the direct input-output comparison. The two methods are compared and then the attention is focused on some advantages of the proposed methodology. The third chapter focuses on the study of real structures when they are subjected to experimental test, where the force is not known, like in an ambient or impact test. In this analysis we decided to use the CWT, which allows a simultaneous investigation in the time and frequency domain of a generic signal x(t). The CWT is first introduced to process free oscillations, with excellent results both in terms of frequencies, dampings and vibration modes. The application in the case of ambient vibrations defines accurate modal parameters of the system, although on the damping some important observations should be made. The fourth chapter is still on the problem of post processing data acquired after a vibration test, but this time through the application of discrete wavelet transform (DWT). In the first part the results obtained by the DWT are compared with those obtained by the application of CWT. Particular attention is given to the use of DWT as a tool for filtering the recorded signal, in fact in case of ambient vibrations the signals are often affected by the presence of a significant level of noise. The fifth chapter focuses on another important aspect of the identification process: the model updating. In this chapter, starting from the modal parameters obtained from some environmental vibration tests, performed by the University of Porto in 2008 and the University of Sheffild on the Humber Bridge in England, a FE model of the bridge is defined, in order to define what type of model is able to capture more accurately the real dynamic behaviour of the bridge. The sixth chapter outlines the necessary conclusions of the presented research. They concern the application of a method in the frequency domain in order to evaluate the modal parameters of a structure and its advantages, the advantages in applying a procedure based on the use of wavelet transforms in the process of identification in tests with unknown input and finally the problem of 3D modeling of systems with many degrees of freedom and with different types of uncertainty.
32

Mixed Mode Fracture Behaviour of Piezoelectric Materials

Boldrini, Claudia <1978> 31 May 2010 (has links)
Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.
33

Procedure di progettazione per sistemi di dissipazione passiva per costruzioni in zona sismica

Orlandi, Samuele <1979> 31 May 2010 (has links)
No description available.
34

Evaluation of the effects of insertion of viscous dampers in Moment Resisting Frames

Muscio, Saverio <1976> 31 May 2010 (has links)
This research work faces the problem of insertion of viscous dampers into Moment Resisiting Frames (MRF) for maximum efficiency in mitigation of the seismic effects. The work would lead to a precise design indication. The fundamental result of the thesis consists in showing that, even for moment-resisting structures, you can design a system of added viscous dampers able to achieve target levels of performances. Ie given the reduction factor in the seismic response, discover the characteristics of the viscous dampers which allow to achieve it.
35

Resistenza di travi metalliche a doppio T con irrigidimenti longitudinali soggette a carichi trasversali concentrati

Dall’Aglio, Fabio <1970> 17 June 2011 (has links)
The thesis deals with the patch loading of I-girder with two longitudinal stiffeners. The configuration with two longitudinal stiffeners is often an excellent solution for beams of higher than 3 meters but has not yet been discussed in EN 1993-1-5. It is proposed a model of resistance harmonized with the methods used in Eurocodes for the other problems of buckling. The model contains three significant parts: the yield resistance, the elastic critical load used to determine the slenderness parameter and a reduction factor that relates the resistance to the slenderness. The thesis is structured into eight chapters, in addition to Preface and Table of Contents. Chapter 3 is a list of all symbols used. Chapter 4 presents a review of earlier works. Chapter 5 details the experimental investigations conducted by Gozzi (2007) on three samples without longitudinal stiffeners. Due to the difficulty of completing a personal physical model testing during the doctorate, it was decided to carefully study the laboratory work by Gozzi and use it as a basis for the calibration of the numerical study. In Chapter 6 is presented the first part of the numerical study. At this stage, the laboratory tests conducted by Gozzi have been reproduced through a finite element model. It is observed a good agreement of numerical results with test data. In Chapter 7 summarizes the results of numerical analysis of the girder with two longitudinal stiffeners. Chapter 8 presents the procedure proposed for calculating the ultimate patch loading resistance of the girder with two longitudinal stiffeners. Chapter 9 contains a summary of work done in this thesis with suggestions for the most important issues for future development. Chapter 10 lists the references. There are also three appendices with test data by Gozzi and data obtained from literature.
36

Il deperimento dei geomateriali da costruzione: implicazioni sulla capacità sismica residua di edifici in CA e muratura ordinaria

Marani, Federica <1980> 17 June 2011 (has links)
This work is dedicated to the study of damaging phenomena involving reinforced concrete structures and masonry buildings and the consequences in terms of structural performances decay. In the Italian context there are many examples of structures that have already exceeded their service life, considering not only the ancient buildings but also infrastructures and R/C buildings that today are operating from more than 50th years. Climate change which is subject to the entire planet, with changing in seasonal weather and increasing in environmental pollution, is not excluded could have a harmful influence on the rate of building materials decay previously deemed as durables. If the aggressive input changes very fast, for example in a few decades, then it can also change the response of a construction material considered so far durable; in this way the knowledge about the art of good build, consolidated over the centuries, is thwarted. Hence this study is focused on the possibility to define the residual capacity for vertical or seismic loads for structures that are already at the limit of their service life, or for which is impossible to define a service life. The problem in an analysis of this kind, and that is what makes this research different from the main studies avaibles in the literature, is to keep in correlation – in a not so expensive computationally way – issues such as: - dangerous environmental inputs adequately simulated; - environmental conditions favorable to the spread of pollutants and development of the degradation reactions (decay’s speed); - link between environmental degradation and residual bearing capacity A more realistic assessment of materials residual performances that constitute the structure allows to leave the actual system for the residual load-bearing capacity estimation in which all factors are simply considered through the use of a safety factor on the materials properties.
37

Fiber beam-columns models with flexure-shear interaction for nonlinear analysis of reinforced concrete structures

Cardinetti, Filippo <1980> 17 June 2011 (has links)
The aim of this study was to develop a model capable to capture the different contributions which characterize the nonlinear behaviour of reinforced concrete structures. In particular, especially for non slender structures, the contribution to the nonlinear deformation due to bending may be not sufficient to determine the structural response. Two different models characterized by a fibre beam-column element are here proposed. These models can reproduce the flexure-shear interaction in the nonlinear range, with the purpose to improve the analysis in shear-critical structures. The first element discussed is based on flexibility formulation which is associated with the Modified Compression Field Theory as material constitutive law. The other model described in this thesis is based on a three-field variational formulation which is associated with a 3D generalized plastic-damage model as constitutive relationship. The first model proposed in this thesis was developed trying to combine a fibre beamcolumn element based on the flexibility formulation with the MCFT theory as constitutive relationship. The flexibility formulation, in fact, seems to be particularly effective for analysis in the nonlinear field. Just the coupling between the fibre element to model the structure and the shear panel to model the individual fibres allows to describe the nonlinear response associated to flexure and shear, and especially their interaction in the nonlinear field. The model was implemented in an original matlab® computer code, for describing the response of generic structures. The simulations carried out allowed to verify the field of working of the model. Comparisons with available experimental results related to reinforced concrete shears wall were performed in order to validate the model. These results are characterized by the peculiarity of distinguishing the different contributions due to flexure and shear separately. The presented simulations were carried out, in particular, for monotonic loading. The model was tested also through numerical comparisons with other computer programs. Finally it was applied for performing a numerical study on the influence of the nonlinear shear response for non slender reinforced concrete (RC) members. Another approach to the problem has been studied during a period of research at the University of California Berkeley. The beam formulation follows the assumptions of the Timoshenko shear beam theory for the displacement field, and uses a three-field variational formulation in the derivation of the element response. A generalized plasticity model is implemented for structural steel and a 3D plastic-damage model is used for the simulation of concrete. The transverse normal stress is used to satisfy the transverse equilibrium equations of at each control section, this criterion is also used for the condensation of degrees of freedom from the 3D constitutive material to a beam element. In this thesis is presented the beam formulation and the constitutive relationships, different analysis and comparisons are still carrying out between the two model presented.
38

Utilizzo di dispositivi isteretici per l'isolamento di piano: strategie per una progettazione sismica di tipo multi-prestazionale / Use of hysteretic devices for the first-story isolation: strategies for a multi-performance seismic design

Gagliardi, Stefano <1975> 01 June 2012 (has links)
Con la presente tesi si è inteso studiare le possibilità applicative di una particolare tipologia strutturale dotata di isolamento sismico “di piano”, intendendosi con ciò una struttura in cui l'intero piano terra, tramite l'inserimento di opportuni elementi dissipativi isteretici ed in analogia al consueto isolamento sismico di base, agisce da “strato” di protezione passiva per i piani sovrastanti. A riguardo, fra le possibili soluzioni per realizzare effettivamente tale isolamento "di piano" è stata considerata la disposizione di particolari elementi dissipativi isteretici di controvento detti Crecent-Shaped Braces, caratterizzati da una forma bilatera o curva, tale comunque da presentare un'eccentricità non nulla fra l'asse del controvento stesso e la linea congiungente gli estremi. / In this PhD thesis a particular type of structure with "first-story" seismic isolation is studied, i.e. a structure in which the entire first floor, through the insertion of appropriate hysteretic dissipative elements and in analogy to the usual seismic base isolation, acts as a "layer" of passive protection for the floors above. Among the possible solutions to achieve this "first-story" isolation a particular hysteretic dissipative bracing element, the Crescent-Shaped Brace, is considered; it is characterized by a shape presenting some eccentricity between the axis of the brace itself and the line joining its ends.
39

Comportamento dinamico fuori del piano di pareti murarie: influenza della deformabilità degli impalcati / Out-of-plane dynamic behaviour of unreinforced masonry walls: influence of diaphragm flexibility

Gabellieri, Rocco <1975> 01 June 2012 (has links)
The aim of this study was to investigate the influence of the diaphragm flexibility on the behavior of out-of-plane walls in masonry buildings. Simplified models have been developed to perform kinematic and dynamic analyses in order to compare the response of walls with different restraint conditions. Kinematic non linear analyses of assemblages of rigid blocks have been performed to obtain the acceleration-displacement curves for walls with different restraint conditions at the top. A simplified 2DOF model has been developed to analyse the dynamic response of the wall with an elastic spring at the top, following the Housner rigid behaviour hypothesis. The dissipation of energy is concentrated at every impact at the base of the wall and is modelled through the introduction of the coefficient of restitution. The sets of equations of the possible configurations of the wall, depending on the different positions of the centre of rotation at the base and at the intermediate hinge have been obtained. An algorithm for the numerical integration of the sets of the equations of motion in the time domain has been developed. Dynamic analyses of a set of walls with Gaussian impulses and recorded accelerograms inputs have been performed in order to compare the response of the simply supported wall with the one of the wall with elastic spring at the top. The influence of diaphragm stiffness Kd has been investigated determining the variation of maximum displacement demand with the value of Kd. A more regular trend has been obtained for the Gaussian input than for the recorded accelerograms.
40

Static analysis of functionally graded cylindrical and conical shells or panels using the generalized unconstrained third order theory coupled with the stress recovery

Rossetti, Luigi <1978> 31 May 2013 (has links)
A 2D Unconstrained Third Order Shear Deformation Theory (UTSDT) is presented for the evaluation of tangential and normal stresses in moderately thick functionally graded conical and cylindrical shells subjected to mechanical loadings. Several types of graded materials are investigated. The functionally graded material consists of ceramic and metallic constituents. A four parameter power law function is used. The UTSDT allows the presence of a finite transverse shear stress at the top and bottom surfaces of the graded shell. In addition, the initial curvature effect included in the formulation leads to the generalization of the present theory (GUTSDT). The Generalized Differential Quadrature (GDQ) method is used to discretize the derivatives in the governing equations, the external boundary conditions and the compatibility conditions. Transverse and normal stresses are also calculated by integrating the three dimensional equations of equilibrium in the thickness direction. In this way, the six components of the stress tensor at a point of the conical or cylindrical shell or panel can be given. The initial curvature effect and the role of the power law functions are shown for a wide range of functionally conical and cylindrical shells under various loading and boundary conditions. Finally, numerical examples of the available literature are worked out.

Page generated in 0.0379 seconds