• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Molecular dynamics simulation of complex molecules at interfaces: dendritic surfactants in clay and amyloid peptides near lipid bilayers

Han, Kunwoo 02 June 2009 (has links)
We apply a molecular dynamics (MD) simulation technique to complex molecules at interfaces. Partitioning of dendritic surfactants into clay gallery and Ab protein behavior near hydrated lipids are chosen for the purpose. Using a full atomistic model of dendritic surfactants, the confinement force profiles featuring oscillatory fashion at moderate layer separation of 10 to 25 Å were observed. Integration of the confinement forces led to free energy profiles, which, in turn, were used to determine the final morphology of the nanocomposite. From the free energy profiles, smaller and linear surfactants (G1 and G2L) are expected to intercalate into the clay comfortably, while larger surfactants (G2 and G3) are expected to form frustrated intercalated structures due to the location and depth of the free energy minima. This would agree with the previous observations. As primary steps to understand the Ab protein behavior under biological conditions, simulations of bulk water and hydrated lipids were performed and the results were compared with the literature. Hydrated lipids were simulated using a full atomistic model of lipids (dipalmitoylphosphatidylcholine) and water with a cvff force-field and it was found that structural properties such as the molecular head group area and membrane thickness were accurately produced with MD simulation. Systems of the protein Ab(1-42) in bulk water were simulated and some secondary structural change, with loss of part of the a-helical structure, occurred during the 1 ns of simulation time at 323K. The fragment Ab(31-42) with b-sheet conformation was also simulated in bulk water, and the extended b-sheet structure became a bent structure. Simulations of Ab(1- 42) or Ab(31-42) near lipid bilayers have been performed to investigate the structural property changes under biological conditions. The different nature of structural change was observed from the simulations of the protein or fragment in water and near lipid bilayers due to the different solvent environment. The protein has close contacts with the membrane surface. It was impossible to observe the conformational change to b-sheet and protein entrance into the lipid bilayer within 1 ns simulations.

Page generated in 0.0833 seconds