• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 2
  • Tagged with
  • 11
  • 11
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomic collision processes in dense plasmas

Mansky, Edmund Jacob 08 1900 (has links)
No description available.
2

Infrared emission and scattering from the dense plasma focus

Neil, George Randall. January 1977 (has links)
Thesis--Wisconsin. / Vita. Includes bibliographical references (leaves 66-67).
3

A study of the X-ray emission from the plasma focus

Rankin, Graham Whitelaw January 1975 (has links)
The X-ray emission from a plasma focus has been studied using time integrated and streak photography. The plasma focus, a small volume of very dense and hot plasma was created in a coaxial plasma gun driven by a fast current pulse of period T ~ 2 μsec which was produced by discharging a condensor bank of V = 12-15 kV, and C = 84 μf. Measurements have shown that a diffuse X-ray emitting plasma column is formed in the 'early' pinch stage, which extends a few centimeters in the axial direction, has expansion velocities of between 2-6 x 10⁷ cm/sec. and lasts for 30-60 nsec. In the following 10-30 nsec. X-ray emission occurs from small plasma regions which have little or no axial velocity. The distance between these "hot" spots are of the order of half a centimeter. These measurements and observations of the X-ray emitting regions are consistent with results obtained by Peacock and Mather. By comparing their results with those of this experiment it is concluded that the appearance of the isolated X-ray sources is associated with the m = 0 instability. / Science, Faculty of / Physics and Astronomy, Department of / Graduate
4

Rapid material interrogation using X rays from a dense plasma focus

Ismail, Mohamed Ismail Abdelaziz Mohamed January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / William L. Dunn / Dense Plasma Focus (DPF) devices are multi-radiation sources of X rays, neutrons (when working with deuterium), ions, and electrons in pulses typically of a few tens of nanoseconds. The Kansas State University device (KSU-DPF) was commissioned to be used as a radiation source with the Mechanical and Nuclear Engineering Department. The device is operated by a 12.5 µF capacitor which can be charged up to 40 kV storing an energy of 10 kJ. The static inductance and resistance of the device L[subscript]0 and r[subscript]0 were measured to be 91±2 nH and 13±3 mΩ. Experiments have shown that the KSU-DPF device produces 2.45 MeV neutrons with a neutron yield of ~2 × 10^7 and 1.05 × 10^7 n/shots in both axial and radial directions. Ions up to 130 keV were measured using a Faraday Cup. The measured hard X-ray spectrum shows an X-ray emission in the range from 20 to 120 keV with a peak at 50 keV while the average effective energy was estimated, using a step filter method, to be 59±3 keV. The KSU-DPF device was used as a pulsed hard X-ray source for material interrogation studies using the signature-based radiation-scanning (SBRS) technique. The SBRS technique uses template matching to differentiate targets that contain certain types of materials, such as chemical explosives or drugs, from those that do not. Experiments were performed with different materials in cans of three sizes. Nitrogen-rich fertilizers and ammonium nitrate were used as explosive surrogates. Experiments showed 100% sensitivity for all sizes of used samples while 50% specificity for 5 and 1- gallon and 28.57% for quart samples. Simulations using MCNP-5 gave results in good agreement with the experimental results. In the simulations, a larger number of materials, including real explosives were tested. To ensure the feasibility of using the DPF devices for this purpose a second device was simulated and the results were encouraging. Experimental and simulation results indicate that use of DPF devices with simple, room-temperature detectors may provide a way to perform rapid screening for threat materials, especially for places where large number of packages need to be investigated.
5

A dense plasma focus device as a pulsed neutron source for material identification

Mohamed, Amgad Elsayed Soliman January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / William L. Dunn / Dense plasma focus (DPF) devices are pulsed power devices capable of producing short-lived, hot and dense plasmas (~10[superscript]19 cm[superscript]-3) through a fast compression of plasma sheath. A DPF device provides intense bursts of electrons and ion beams, X-rays, and 2.5 MeV neutrons when operated with deuterium through the fusion reaction [superscript]2H(d,n)[superscript]3He. The Kansas State University DPF machine was designed and constructed in early 2010. The device was characterized to determine its performance as a neutron source. The device was shown to produce 5.0x10[superscript]7 neutrons/pulse using a tungsten-copper anode. Such machines have the advantages of being non-radioactive, movable, and producing short pulses (typically tens of nanoseconds), which allows rapid interrogation. The signature-based radiation-scanning (SBRS) method has been used to distinguish targets that contain explosives or explosive surrogates from targets that contain materials called “inert,” meaning they are not explosive-like. Different targets were placed in front of the DPF source at a distance of 45 cm. Four BC-418 plastic scintillators were used to measure the direct neutron yield and the neutrons scattered from various targets; the neutron source and the detectors were shielded with layers of lead, stainless steel, and borated polyethylene to shield against the X-rays and neutrons. One of the plastic scintillators was set at 70[supercript]o and two were set at 110[superscript]o from the line of the neutron beam; a bare [superscript]3He tube was used for detecting scattered thermal neutrons. Twelve metal cans of one-gallon each containing four explosive surrogates and eight inert materials were used as targets. Nine materials in five-gallon cans including three explosive surrogates were also used. The SBRS method indicated a capability to distinguish the explosive surrogates in both experiments, although the five gallon targets gave more accurate results. The MCNP code was used to validate the experimental work and to simulate real explosives. The simulations indicated the possibility to use the time of flight (TOF) technique in future experimental work, and were able to distinguish all the real explosives from the inert materials.
6

Feasibility and Design Requirements of Fission Powered Magnetic Fusion Propulsion Systems for a Manned Mars Mission

Paul Stockett (7046678) 16 August 2019 (has links)
<div>For decades nuclear fusion space propulsion has been studied but due to technological set backs for self-sustaining fusion, it has been repeatedly abandoned in favor of more near-term or present day solutions. While these present day solutions of chemical and electric propulsion have been able to accomplish their missions, as the human race looks to explore Mars, a near term solution utilizing nuclear fusion propulsion must be sought as the fusion powered thruster case currently does not meet the minimum 0.2 thrust-to-weight ratio requirement. The current work seeks to investigate the use of a ssion powered magnetic fusion thruster for a manned Mars mission with an emphasis on creating a very near-term propulsion system. This will be accomplished by utilizing present day readily available technology and adapting methods of nuclear electric and nuclear fusion propulsion to build this ssion assisted propulsion system. Near term solutions have been demonstrated utilizing both DT and D-He3 fuels for a ssion powered and ssion assisted Dense Plasma Focus fusion device capable of achieving thrust-to-weight ratios greater than 0.2 for V's of 20 km/s. The Dense Plasma Focus can achieve thrust-to-weight ratios of 0.34 and 0.4 for ssion assisted and ssion powered cases, respectively, however, the Gasdynamic Mirror device proved to be an infeasible design as a ssion powered thruster due to the increased weight of a ssion reactor.</div>
7

Production of a plasma with high-level pulsed microwave power

January 1961 (has links)
Thomas J. Fessenden. / Issued also as a thesis, M.I.T. Dept. of Electrical Engineering, April 29, 1961." "August 29, 1961." / Bibliography: p. 50-51. / Army Signal Corps Contract DA36-039-sc-78108. Dept. of the Army Task 3-99-20-001 and Project 3-99-00-000.
8

Cold X-ray Effects on Satellite Solar Panels in Orbit

Fogleman, Myles 01 January 2019 (has links)
An exo-atmospheric nuclear detonation releases up to 80 percent of its’ energy as X-rays. Satellite’s solar cells and their protective coatings are vulnerable to low energy X-ray radiation. Cold X-rays (~1-1.5 keV) are absorbed close to the surface of materials causing the blow-off and rapid formation of Warm Dense Plasmas (WDPs), particularly in a gap between the unshielded active elements of solar cells. To understand how WDPs are created, it is necessary to investigate the power density distribution produced by cold X-rays for typical solar panel surface materials. The Monte Carlo stepping model implemented in the GEANT4 software toolkit is utilized to determine the power density created by cold X-rays in a multi-layered target composed of a layer of an active cell shielded by layers of cover glass and anti-reflective coating. The power density generated by cold X-rays in the unshielded semiconductor layer at different incidence angles is also investigated in order to account for different orientations of the satellite’s solar panels with respect to the point of nuclear detonation. The flux spectrum of X-rays originating from a nuclear blast is described by the Planck's blackbody function with the temperature from 0.1 keV to 10 keV. The secondary radiation (photo-electrons, fluorescence photons, Auger- and Compton-electrons) resulting from absorption and scattering of primary X-rays is taken into account in the redistribution of energy deposition within slabs. The profiles of power density within the slab system produced by primary cold X-rays, secondary photons and electrons are calculated as a function of depth. The discontinuity in power density profiles is observed at the interfaces of slabs due to discrete changes in stopping power between slab materials. The power density is found to be higher in slab materials with higher mass density. The power density profiles are then used in the atomistic Momentum Scaling Model (MSM) coupled with the Molecular Dynamics (MD) method (MSM-MD) to predict the spatiotemporal evolution of WDP in vacuum. The spatial and temporal distribution of density and temperature fields of expanding WDP is evaluated from the MSM-MD simulations. These modeling results provide insights into the underlining physics of the formation and spatiotemporal evolution of WDPs induced by cold X-rays.
9

Interaction of Ultrashort X-ray Pulses with Material

Bergh, Magnus January 2007 (has links)
<p>Radiation damage limits the resolution in imaging experiments. Damage is caused by energy deposited into the sample during exposure. Ultrashort and extremely bright X-ray pulses from free-electron lasers (FELs) offer the possibility to outrun key damage processes, and temporarily improve radiation tolerance. Theoretical models indicate that high detail-resolutions could be realized on non-crystalline samples with very short pulses, before plasma expansion.</p><p>Studies presented here describe the interaction of a very intense and ultrashort X-ray pulse with material, and investigate boundary conditions for flash diffractive imaging both theoretically and experimentally. In the hard X-ray regime, predictions are based on particle simulations with a continuum formulation that accounts for screening from free electrons.</p><p>First experimental results from the first soft X-ray free-electron laser, the FLASH facility in Hamburg, confirm the principle of flash imaging, and provide the first validation of our theoretical models. Specifically, experiments on nano-fabricated test objects show that an interpretable image can be obtained to high resolution before the sample is vaporized. Radiation intensity in these experiments reached 10^14 W/cm^2, and the temperature of the sample rose to 60000 Kelvin after the 25 femtosecond pulse left the sample. Further experiments with time-delay X-ray holography follow the explosion dynamics over some picoseconds after illumination.</p><p>Finally, this thesis presents results from biological flash-imaging studies on living cells. The model is based on plasma calculations and fluid-like motions of the sample, supported by the time-delay measurements. This study provides an estimate for the achievable resolutions as function of wavelength and pulse length. The technique was demonstrated by our team in an experiment where living cells were exposed to a single shot from the FLASH soft X-ray laser.</p>
10

Interaction of Ultrashort X-ray Pulses with Material

Bergh, Magnus January 2007 (has links)
Radiation damage limits the resolution in imaging experiments. Damage is caused by energy deposited into the sample during exposure. Ultrashort and extremely bright X-ray pulses from free-electron lasers (FELs) offer the possibility to outrun key damage processes, and temporarily improve radiation tolerance. Theoretical models indicate that high detail-resolutions could be realized on non-crystalline samples with very short pulses, before plasma expansion. Studies presented here describe the interaction of a very intense and ultrashort X-ray pulse with material, and investigate boundary conditions for flash diffractive imaging both theoretically and experimentally. In the hard X-ray regime, predictions are based on particle simulations with a continuum formulation that accounts for screening from free electrons. First experimental results from the first soft X-ray free-electron laser, the FLASH facility in Hamburg, confirm the principle of flash imaging, and provide the first validation of our theoretical models. Specifically, experiments on nano-fabricated test objects show that an interpretable image can be obtained to high resolution before the sample is vaporized. Radiation intensity in these experiments reached 10^14 W/cm^2, and the temperature of the sample rose to 60000 Kelvin after the 25 femtosecond pulse left the sample. Further experiments with time-delay X-ray holography follow the explosion dynamics over some picoseconds after illumination. Finally, this thesis presents results from biological flash-imaging studies on living cells. The model is based on plasma calculations and fluid-like motions of the sample, supported by the time-delay measurements. This study provides an estimate for the achievable resolutions as function of wavelength and pulse length. The technique was demonstrated by our team in an experiment where living cells were exposed to a single shot from the FLASH soft X-ray laser.

Page generated in 0.058 seconds