Spelling suggestions: "subject:"sense wireless networks"" "subject:"denna wireless networks""
1 |
Design and Application of Wireless Machine-to-Machine (M2M) NetworksZheng, Lei 24 December 2014 (has links)
In the past decades, wireless Machine-to-Machine (M2M) networks have been developed in various industrial and public service areas and envisioned to improve our daily life in next decades, e.g., energy, manufacturing, transportation, healthcare, and safety. With the advantage of low cost, flexible deployment, and wide coverage as compared to wired communications, wireless communications play an essential role in providing information exchange among the distributed devices in wireless M2M networks. However, an intrinsic problem with wireless communications is that the limited radio spectrum resources may result in unsatisfactory performance in the M2M networks. With the number of M2M devices projected to reach 20 to 50 billion by 2020, there is a critical need to solve the problems related to the design and applications in the wireless M2M networks.
In this dissertation work, we study the wireless M2M networks design from three closely related aspects, the wireless M2M communication reliability, efficiency, and Demand Response (DR) control in smart grid, an important M2M application taking the advantage of reliable and efficient wireless communications. First, for the communication reliability issue, multiple factors that affect communication reliability are considered, including the shadowing and fading characteristics of wireless channels, and random network topology. A general framework has been proposed to evaluate the reliability for data exchange in both infrastructure-based single-hop networks and multi-hop mesh networks. Second, for the communication efficiency issue, we study two challenging scenarios in wireless M2M networks: one is a network with a large number of end devices, and the other is a network with long, heterogeneous, and/or varying propagation delays. Media Access Control (MAC) protocols are designed and performance analysis are conducted for both scenarios by considering their unique features. Finally, we study the DR control in smart grid. Using Lyapunov optimization as a tool, we design a novel demand response control strategy considering consumer’s comfort requirements and fluctuations in both the renewable energy supply and customers’ load demands. By considering those unique features of M2M networks in data collection and distribution, the analysis, design and optimize techniques proposed in this dissertation can enable the deployment of wireless M2M networks with a large number of end devices and be essential for future proliferation of wireless M2M networks. / Graduate / 0544 / flintlei@gmail.com
|
2 |
Optimizing dense wireless networks of MIMO linksCortes-Pena, Luis Miguel 27 August 2014 (has links)
Wireless communication systems have exploded in popularity over the past few decades. Due to their popularity, the demand for higher data rates by the users, and the high cost of wireless spectrum, wireless providers are actively seeking ways to improve the spectral efficiency of their networks. One promising technique to improve spectral efficiency is to equip the wireless devices with multiple antennas. If both the transmitter and receiver of a link are equipped with multiple antennas, they form a multiple-input multiple-output (MIMO) link.
The multiple antennas at the nodes provide degrees-of-freedom that can be used for either sending multiple streams of data simultaneously (a technique known as spatial multiplexing), or for suppressing interference through linear combining, but not both. Due to this trade-off, careful allocation of how many streams each link should carry is important to ensure that each node has enough degrees-of-freedom available to suppress the interference and support its desired streams. How the streams are sent and received and how interference is suppressed is ultimately determined by the beamforming weights at the transmitters and the combining weights at the receivers. Determining these weights is, however, made difficult by their inherent interdependency.
Our focus is on unplanned and/or dense single-hop networks, such as WLANs and femtocells, where each single-hop network is composed of an access point serving several associated clients. The objective of this research is to design algorithms for maximizing the performance of dense single-hop wireless networks of MIMO links. We address the problems of determining which links to schedule together at each time slot, how many streams to allocate to each link (if any), and the beamforming and combining weights that support those streams.
This dissertation describes four key contributions as follows:
- We classify any interference suppression technique as either unilateral interference suppression or bilateral interference suppression. We show that a simple bilateral interference suppression approach outperforms all known unilateral interference suppression approaches, even after searching for the best unilateral solution.
- We propose an algorithm based on bilateral interference suppression whose goal is to maximize the sum rate of a set of interfering MIMO links by jointly optimizing which subset of transmitters should transmit, the number of streams for each transmitter (if any), and the beamforming and combining weights that support those streams.
- We propose a framework for optimizing dense single-hop wireless networks. The framework implements techniques to address several practical issues that arise when implementing interference suppression, such as the overhead of performing channel measurements and communicating channel state information, the overhead of computing the beamforming and combining weights, and the overhead of cooperation between the access points.
- We derive the optimal scheduler that maximizes the sum rate subject to proportional fairness.
Simulations in ns-3 show that the framework, using the optimal scheduler, increases the proportionally fair aggregate goodput by up to 165% as compared to the aggregate goodput of 802.11n for the case of four interfering single-hop wireless networks with two clients each.
|
3 |
Topics In Modeling, Analysis And Optimisation Of Wireless NetworksRamaiyan, Venkatesh 01 1900 (has links)
The work in this thesis is concerned with two complementary aspects of wireless networks research; performance analysis and resource optimization. The first part of the thesis focusses on the performance analysis of IEEE 802.11(e) wireless local area networks. We study the distributed coordination function (DCF) and the enhanced distributed channel access (EDCA) MAC of the IEEE 802.11(e) standard. We consider n IEEE 802.11(e) DCF (EDCA) nodes operating as a single cell; by single cell, we mean that every packet transmission can be heard by every other node. Packet loss is attributed only to simultaneous transmissions by the nodes (i.e., collisions). Using the well known decoupling approximation [19], we characterize the collision behaviour and the throughput performance of the WLAN with a set of fixed point equations involving the backoff parameters of the nodes. We observe that the fixed point equations can have multiple solutions, and in such cases, the system exhibits multistability and short-term unfairness of throughput. Also, the fixed point analysis fails to characterize the average system behaviour when the system has multiple solutions. We then obtain sufficient conditions (in terms of the backoff parameters of the nodes) under which the fixed point equations have a unique solution. For such cases, using simulations, we observe that the fixed point analysis predicts the long term time average throughput behaviour accurately. Then, using the fixed point analysis, we study throughput differentiation provided by the different backoff parameters, including minimum contention window (CWmin), persistence factor and arbitration interframe space (AIFS) of the IEEE 802.11e standard. Finally, we extend the above results to the case where the receiver supports physical layer capture.
In the second part of the thesis, we study resource allocation and optimization problems for a variety of wireless network scenarios. For a dense wireless network, deployed over a small area and with a network average power constraint, we show that single cell operation (the channel supports only one successful transmission at any time) is throughput efficient in the asymptotic regime (in which the network average power is made large). We show that, for a realistic path loss model and a physical interference model (SINR based), the maximum aggregate bit rate among arbitrary transmitter-receiver pairs scales only as Θ(log(¯P)), where¯P
is the network average power. Spatial reuse is ineffective and direct transmission between source destination pairs is the throughput optimal strategy. Then, operating the network with only a single successful transmission permitted at a time, and with CSMA being used to select the successful transmitter-receiver pair, we consider the situation in which there is stationary spatiotemporal channel fading. We study the optimal hop length (routing strategy) and power control (for a fading channel) that maximizes the network aggregate throughput for a given network power constraint. For a fixed transmission time scheme, we study the throughput maximizing schedule under homogeneous traffic and MAC assumptions. We also characterize the optimal operating point (hop length and power control) in terms of the network power constraint and the channel fade distribution.
It is now well understood that in a multihop network, performance can be enhanced if, instead of just forwarding packets, the network nodes create output packets by judiciously combining their input packets, a strategy that is called “network coding.” For a two link slotted wireless network employing a network coding strategy and with fading channels, we study the optimal power control and optimal exploitation of network coding opportunities that minimizes the average power required to support a given arrival rate. We also study the optimal power-delay tradeoff for the network.
Finally, we study a vehicular network problem, where vehicles are used as relays to transfer data between a pair of stationary source and destination nodes. The source node has a file to transfer to the destination node and we are interested in the delay minimizing schedule for the vehicular network. We characterize the average queueing delay (at the
source node) and the average transit delay of the packets (at the relay vehicles) in terms of the vehicular speeds and their interarrival times, and study the asymptotically optimal tradeoff achievable between them.
|
Page generated in 0.1023 seconds