Spelling suggestions: "subject:"densité d'état intégrée"" "subject:"densité d'était intégrée""
1 |
Perturbations à oscillations lentes de l'opérateur de Schrödinger périodique.Metelkina, Asya 30 September 2011 (has links) (PDF)
On étudie l'opérateur de Schrödinger Ha + V(x) + W(x dans L où V est un potentiel périodique générique. On suppose que w est périodique et a (O, 1) de sorte que la perturbation W(x soit à oscillations asymptotiquement lentes. On étudie l'asymptotique des solutions de l'équation propre associée par deux approches différentes. La première approche, qui est basée sur une méthode de Sirnon---Zhu, utilise des approximations périodiques. On obtient une formule explicite pour la densité d'états intégrée pour Ha. Puis, on prouve l'existence et on donne une formule pour l'exposant de Lyapounov pour presque toutes les énergies. Nous décrivons aussi l'ensemble exceptionnel des énergies, qui contient le spectre singulier continu de Ha.La seconde méthode est nouvelle : elle utilise des approximations quasi- périodiques plutôt que périodiques. On approxime la résolvante de Ha par les résolvantes des opérateurs quasi-périodiques Hz,e + V(x) + W(Ex + z) pour des paramètres z et E bien choisis. Afin de pou- voir appliquer la méthode de la résolvante approchée à Ha, on étudie des solutions de l'équation propre pour à l'aide de la méthode BKW complexe de Fedotov--Klopp. On obtient les asymptotiques des solutions et des matrices de monodroimie quand tend vers zéro. Sous la condition c > , on construit des solutions de l'équation propre pour Ha ayant une asymptotique simple en x sur de grands intervalles. Puis, par l'étude des matrices de transfert associées, on obtient une nouvelle description, plus précise que la précédente, de l'ensemble exceptionnel des énergies.
|
Page generated in 0.0674 seconds