• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mechanically Triggered Self-Immolative Polymers

Guan, Xin 01 May 2023 (has links)
No description available.
2

<b>Cannabinoid-Based Bioplastics for Circular-Lifecycle Devices</b>

Michael Musa Sotzing (18431766) 26 April 2024 (has links)
<p dir="ltr">A new class of bioplastics polymer materials synthesized from hemp-derived cannabinoids are demonstrated through a lifecycle approach. The poly(cannabinoid) material platform is utilized to develop application-specific polymers for the fabrication of electrocardiogram electrodes and on-skin heaters. A rigid homopolymer pCBD-adipate is synthesized to formulate conductive composite inks and a CBD/CBG block copolymer is developed as an adhesive. Inks are printed using the DIW process allowing for versatile and rapid prototyping of devices. ECG performance assessments yield comparable performance to conventional wet gel electrodes in ambient conditions, and improved performance in submerged testing. Heating devices are demonstrated for conformality by application to a joint, as well as self-regulating capabilities by controller-free joule heating. Following device applications, pCBD-adipate homopolymer conductive composite is used to demonstrate disposal routes of poly(cannabinoid)s through mechanical and chemical recycling. Mechanical recycling exhibits high conductivity over multiple cycles but notably diminishes. Chemical recycling achieved through base-catalyzed hydrolysis of the ester bonds is successfully shown to yield cannabidiol monomer after filtration, thereby paving the path towards full circularity of poly(cannabinoid)s.</p>

Page generated in 0.0433 seconds