• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deep Synthetic Noise Generation for RGB-D Data Augmentation

Hammond, Patrick Douglas 01 June 2019 (has links)
Considerable effort has been devoted to finding reliable methods of correcting noisy RGB-D images captured with unreliable depth-sensing technologies. Supervised neural networks have been shown to be capable of RGB-D image correction, but require copious amounts of carefully-corrected ground-truth data to train effectively. Data collection is laborious and time-intensive, especially for large datasets, and generation of ground-truth training data tends to be subject to human error. It might be possible to train an effective method on a relatively smaller dataset using synthetically damaged depth-data as input to the network, but this requires some understanding of the latent noise distribution of the respective camera. It is possible to augment datasets to a certain degree using naive noise generation, such as random dropout or Gaussian noise, but these tend to generalize poorly to real data. A superior method would imitate real camera noise to damage input depth images realistically so that the network is able to learn to correct the appropriate depth-noise distribution.We propose a novel noise-generating CNN capable of producing realistic noise customized to a variety of different depth-noise distributions. In order to demonstrate the effects of synthetic augmentation, we also contribute a large novel RGB-D dataset captured with the Intel RealSense D415 and D435 depth cameras. This dataset pairs many examples of noisy depth images with automatically completed RGB-D images, which we use as proxy for ground-truth data. We further provide an automated depth-denoising pipeline which may be used to produce proxy ground-truth data for novel datasets. We train a modified sparse-to-dense depth-completion network on splits of varying size from our dataset to determine reasonable baselines for improvement. We determine through these tests that adding more noisy depth frames to each RGB-D image in the training set has a nearly identical impact on depth-completion training as gathering more ground-truth data. We leverage these findings to produce additional synthetic noisy depth images for each RGB-D image in our baseline training sets using our noise-generating CNN. Through use of our augmentation method, it is possible to achieve greater than 50% error reduction on supervised depth-completion training, even for small datasets.
2

Estimation de profondeur à partir d'images monoculaires par apprentissage profond / Depth estimation from monocular images by deep learning

Moukari, Michel 01 July 2019 (has links)
La vision par ordinateur est une branche de l'intelligence artificielle dont le but est de permettre à une machine d'analyser, de traiter et de comprendre le contenu d'images numériques. La compréhension de scène en particulier est un enjeu majeur en vision par ordinateur. Elle passe par une caractérisation à la fois sémantique et structurelle de l'image, permettant d'une part d'en décrire le contenu et, d'autre part, d'en comprendre la géométrie. Cependant tandis que l'espace réel est de nature tridimensionnelle, l'image qui le représente, elle, est bidimensionnelle. Une partie de l'information 3D est donc perdue lors du processus de formation de l'image et il est d'autant plus complexe de décrire la géométrie d'une scène à partir d'images 2D de celle-ci.Il existe plusieurs manières de retrouver l'information de profondeur perdue lors de la formation de l'image. Dans cette thèse nous nous intéressons à l’estimation d'une carte de profondeur étant donné une seule image de la scène. Dans ce cas, l'information de profondeur correspond, pour chaque pixel, à la distance entre la caméra et l'objet représenté en ce pixel. L'estimation automatique d'une carte de distances de la scène à partir d'une image est en effet une brique algorithmique critique dans de très nombreux domaines, en particulier celui des véhicules autonomes (détection d’obstacles, aide à la navigation).Bien que le problème de l'estimation de profondeur à partir d'une seule image soit un problème difficile et intrinsèquement mal posé, nous savons que l'Homme peut apprécier les distances avec un seul œil. Cette capacité n'est pas innée mais acquise et elle est possible en grande partie grâce à l'identification d'indices reflétant la connaissance a priori des objets qui nous entourent. Par ailleurs, nous savons que des algorithmes d'apprentissage peuvent extraire ces indices directement depuis des images. Nous nous intéressons en particulier aux méthodes d’apprentissage statistique basées sur des réseaux de neurones profond qui ont récemment permis des percées majeures dans de nombreux domaines et nous étudions le cas de l'estimation de profondeur monoculaire. / Computer vision is a branch of artificial intelligence whose purpose is to enable a machine to analyze, process and understand the content of digital images. Scene understanding in particular is a major issue in computer vision. It goes through a semantic and structural characterization of the image, on one hand to describe its content and, on the other hand, to understand its geometry. However, while the real space is three-dimensional, the image representing it is two-dimensional. Part of the 3D information is thus lost during the process of image formation and it is therefore non trivial to describe the geometry of a scene from 2D images of it.There are several ways to retrieve the depth information lost in the image. In this thesis we are interested in estimating a depth map given a single image of the scene. In this case, the depth information corresponds, for each pixel, to the distance between the camera and the object represented in this pixel. The automatic estimation of a distance map of the scene from an image is indeed a critical algorithmic brick in a very large number of domains, in particular that of autonomous vehicles (obstacle detection, navigation aids).Although the problem of estimating depth from a single image is a difficult and inherently ill-posed problem, we know that humans can appreciate distances with one eye. This capacity is not innate but acquired and made possible mostly thanks to the identification of indices reflecting the prior knowledge of the surrounding objects. Moreover, we know that learning algorithms can extract these clues directly from images. We are particularly interested in statistical learning methods based on deep neural networks that have recently led to major breakthroughs in many fields and we are studying the case of the monocular depth estimation.

Page generated in 0.1119 seconds