Spelling suggestions: "subject:"desaminação"" "subject:"disambiguate""
1 |
Identificação e desambiguação de menções a produtos em conteúdo gerado por usuários : um estudo de caso no domínio de jogosBarros, Diego de Azevedo 12 July 2016 (has links)
Submitted by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-29T15:11:00Z
No. of bitstreams: 1
Dissertação - Diego de A. Barros.pdf: 760197 bytes, checksum: 4306ea5472fd227d9ecd45e370ab7885 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-29T15:11:15Z (GMT) No. of bitstreams: 1
Dissertação - Diego de A. Barros.pdf: 760197 bytes, checksum: 4306ea5472fd227d9ecd45e370ab7885 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-11-29T15:11:33Z (GMT) No. of bitstreams: 1
Dissertação - Diego de A. Barros.pdf: 760197 bytes, checksum: 4306ea5472fd227d9ecd45e370ab7885 (MD5) / Made available in DSpace on 2016-11-29T15:11:33Z (GMT). No. of bitstreams: 1
Dissertação - Diego de A. Barros.pdf: 760197 bytes, checksum: 4306ea5472fd227d9ecd45e370ab7885 (MD5)
Previous issue date: 2016-07-12 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / A very important issue for the analysis of comments posted by users in social networks is
the identification of the entities that are the target of these comments. However, correctly
identifying the entities mentioned in texts produced by users is a challenging task, since
the same entity can be mentioned in several different ways, depending on the user and on
how the mention is being made. In addition, these comments are characterized by text
with low-quality writing, misspellings, grammatical errors, etc. In this work, we present a
case study on the problem of identification and disambiguation of mentions to entities in
user-generated content, focused on the domain of games. The choice of this domain is due
to the economic and cultural importance of this type of content and also because most of
the work in recent literature related to this problems focuses on the context of electronics
(televisions, smartphones, etc.). As a strategy for carrying out this case study, we have
developed a tool called GameSpotter, which uses methods of named entity recognition
- NER and named entity disambiguation - NED to identify and disambiguate mentions
to games in comments posted on a real Web forum. Therefore, we have developed two
alternative NER methods and one NED method focused on the domain of games. Our
experimental results showed that our NER and NED methods are effective, achieving an
average precision of 0.93 and 0.83 in the recognition and disambiguation mentions of
games, respectively. / Um problema bastante relevante para a análise de comentários postados por usuários em
redes sociais é a identificação das entidades que são o alvo destes comentários. No
entanto, identificar corretamente as entidades mencionadas em textos produzidos pelos
usuários é uma tarefa desafiadora, visto que uma mesma entidade pode ser mencionada
de várias maneiras diferentes, dependendo do usuário e de como a menção está sendo
feita. Além disso, esses comentários são caracterizados por texto com baixa qualidade
de escrita, erros ortográficos, gramaticais, etc. Neste trabalho, apresentamos um estudo
de caso sobre o problema de identificação e desambiguação de menções a entidades em
conteúdo gerado por usuários, voltado para o domínio de jogos. A escolha deste domínio
deve-se à importância econômica e cultural deste tipo de conteúdo e também ao fato de a
maioria dos trabalhos na literatura relacionada recente abordar este problema no contexto
de produtos eletrônicos (televisores, smartphones, etc.). Como estratégia para a realização
deste estudo de caso, desenvolvemos uma ferramenta chamada GameSpotter, que
utiliza métodos de reconhecimento de entidades nomeadas (named entity recognition -
NER) e de desambiguação de entidades nomeadas (named entity disambiguation - NED)
para identificar e desambiguar as menções a jogos nos comentários postados em um fórum
real daWeb. Para tanto, desenvolvemos dois métodos alternativos NER e um método
de NED voltados ao domínio de jogos. Nossos resultados experimentais mostraram que
nossos métodos de NER e NED são efetivos, tendo alcançado em média uma precisão de
0,93 e 0,83 em relação ao reconhecimento e desambiguação de menções a jogos, respectivamente.
|
2 |
Um estudo comparativo entre abordagens supervisionadas para a resolução de referências a autores / A comparative study of supervised approaches for author reference resolutionCANUTO, Sérgio Daniel Carvalho 25 August 2011 (has links)
Made available in DSpace on 2014-07-29T14:57:49Z (GMT). No. of bitstreams: 1
Dissertacao Sergio Daniel Carvalho Canuto.pdf: 584503 bytes, checksum: 6a393853a561ed8fec4bd9e4eef56628 (MD5)
Previous issue date: 2011-08-25 / In this work we investigate two classes of solutions for the problem of author name disambiguation.We refer to the approach of the first class as relational based on attributes
(RBA) solutions. These approaches use similarity measures based on attributes of the two references being compared or based on the attributes of other references connected to them by authorship. The other class of approaches uses information on semantic relationships among entities in addition to attribute based similarity measures to decide
if two references refer to the same author. We refer to the approaches of this class as relational based on entities (RBE) solutions. We present a supervised version of the RBE
based on the work introduced by Bhattacharya and Gettor [7]. In the experiments we conducted our RBE solution presented statistically significant gains in efficacy over all
the other methods studied. However, the gains are only marginal over the RBA methods experimented. On the other hand, the execution time of both training and testing phases of the RBE methods are notably greater than those of the RBA methods. As far as we know there is no other similar study reported in literature and we consider the results reported
here are relevant because they inspire research about enhancing RBA solutions. / Neste trabalho investigamos duas classes de soluções supervisionadas para o problema de resolver se duas ou mais referências a autores (nomes de autores) correspondem à
mesma pessoa. Denominamos abordagens relacionais baseadas em atributo (RBA) as abordagens da primeira classe. Nessas abordagens são utilizadas medidas de similaridades
entre atributos textuais de duas referências ou de referências ligadas a elas por coautoria. A outra classe de soluções estudada utiliza informações de relacionamento semântico
entre entidades, em adição às similaridades por atributos, para decidir quando duas ou mais referências devem ser consideradas correferentes. Denominamos as abordagens
dessa classe de relacionais baseadas em entidades (RBE). Apresentamos uma versão supervisionada de solução RBE que se baseia na proposta apresentada por Bhattacharya e
Gettor [7]. Experimentos utilizando duas coleções reais e uma coleção artificial mostram que a solução RBE proposta neste trabalho apresenta ganhos de eficácia estatisticamente
comprovados em relação a todos os métodos analisados. Entretanto, o ganho é apenas marginal em relação aos métodos da classe RBA analisados. Por outro lado, o custo
computacional tanto de treino quanto de teste das abordagens RBE é consideravelmente maior que o custo dos métodos RBA. Consideramos que esse estudo comparativo é inédito e que as conclusões são importantes, pois incentivam pesquisas para o aprimoramento das soluções RBA.
|
3 |
Desambiguação lexical de sentidos para o português por meio de uma abordagem multilíngue mono e multidocumento / Word Sense Disambiguation for portuguese through multilingual mono and multi-documentNóbrega, Fernando Antônio Asevêdo 28 May 2013 (has links)
A ambiguidade lexical é considerada uma das principais barreiras para melhoria de aplicações do Processamento de Língua Natural (PLN). Neste contexto, tem-se a área de Desambiguação Lexical de Sentido (DLS), cujo objetivo é desenvolver e avaliar métodos que determinem o sentido correto de uma palavra em um determinado contexto por meio de um conjunto finito de possíveis significados. A DLS é empregada, principalmente, no intuito de prover recursos e ferramentas para diminuir problemas de ambiguidade e, consequentemente, contribuir para melhorias de resultados em outras áreas do PLN. Para o Português do Brasil, pouco se tem pesquisado nesta área, havendo alguns trabalhos bem específicos de domínio. Outro fator importante é que diversas áreas do PLN engajam-se no cenário multidocumento, onde a computação é efetuada sobre uma coleção de textos, todavia, não há relato de trabalhos de DLS direcionados a este cenário, tampouco experimentos de desambiguação neste domínio. Portanto, neste trabalho de mestrado, objetivou-se o desenvolvimento de métodos de DLS de domínio geral voltado à língua Portuguesa do Brasil e o desenvolvimento de algoritmos de desambiguação que façam uso de informações multidocumento, bem como a experimentação e avaliação destes no cenário multidocumento. Para tanto, a fim de subsidiar experimentos, desenvolvimento e avaliação deste projeto, anotou-se manualmente o córpus CSTNews, caracterizado como um córpus multidocumento, utilizando a WordNet de Princeton como repositório de sentidos, que organiza os significados por meio de conjuntos de sinônimos ( synsets) e relações linguísticas entre estes. Foram desenvolvidos quatro métodos de DLS e algumas variações, sendo: um método heurístico (para aferir valores de baseline); variações do algoritmo de Lesk (1986); adaptação do algoritmo de Mihalcea and Moldovan (1999); e uma variação do método de Lesk para o cenário multidocumento. Foram realizados três experimentos para avaliação dos métodos, cujos objetivos foram: determinar o desempenho geral dos algoritmos em todo o córpus; avaliar a qualidade de desambiguação de palavras mais ambíguas no córpus; e verificar o ganho de qualidade da desambiguação ao empregar informação multidocumento. Após estes experimentos, pôde-se observar que o método heurístico apresenta um melhor resultado geral. Contudo, é importante ressaltar que a maioria das palavras anotadas no córpus tiveram apenas um synset, que, normalmente, era o mais frequente, o que, consequentemente, apresenta um cenário mais propício ao método heurístico. Outro fato importante foi que, neste cenário, a diferença de desempenho entre o método de DLS multidocumento e o heurístico é estatisticamente irrelevante. Já para a desambiguação de palavras mais ambíguas, o método heurístico foi inferior, evidenciando que, para a desambiguação de palavras mais ambíguas, são necessários métodos mais sofisticados de DLS. Por fim, verificou-se que a utilização de informação multidocumento auxilia o processo de desambiguação. As contribuições deste trabalho podem ser agrupadas entre teóricas e técnicas. Nas teóricas, tem-se a investigação e análises da DLS no cenário multidocumento. Entre as contribuições técnicas, foram desenvolvidos métodos de DLS, um córpus anotado e uma ferramenta de anotação direcionados à língua Portuguesa do Brasil, que podem avançar as pesquisas em DLS para o idioma / The lexical ambiguity is considered one of the main barries to improving applications of Natural Language Processing (NLP). In this context, it has benn the area of Word Sense Disambiguation (WSD), whose goal is to develop and evaluate methods to determine the correct sense of a word in a give context by a nite set of possible meanings. The DLS is used mainly in order to provide resources and tools to reduce problems of ambiguity and thus contribute to improved results in other areas of NLP. In the Portuguese of Brazil, little has been researched in this area, with some work and specic domain. Another important factor is that many areas of NLP commit themselves in multidocument scenario, where the computation is performed on a collection of texts, however, there is no report of WSD work directed to this scenario, either disambiguation experiments in this eld. Therefore, this master thesis aimed to develop methods of WSD general domain facing the Portuguese language in Brazil and the development of algorithms that make use of disambiguation multidocument informations, as well as experimentation and evaluation of the multidocument scenario. Therefore, in order to support experiments, development and evaluation of this project, the corpus CSTNews with 50 document collections, was manually annotated by means of synsets of the WordNet Princeton. Four methods were developed: A heuristic method (to measure values fo baseline); variations of the Lesk (1986) algorithm; a adaptation of the Mihalcea and Moldovan (1999) algorithm; and a variation of the Lesk method for multidocument scenario. Three experiments were conducted to evaluate the methods, whose objectives were to determine the general performance algorithms across the corpus; evaluate the quality of disambiguation of most ambiguous words in the corpus, and check the gain quality of disambiguation by employing information multidocumento. After these experiments, it was observed that the heuristic method presents a better overall result. However, it is important to note that most of the words in the annotated corpus had only one synset, which usually was the most frequent, which, in turn, presents a scenario more conducive to the heuristic method. Another important fact was that in this scenario, the performance dierence between the heuristic method and multidocument algorithm was statistically irrelevant. As for the disambiguation of most ambiguous words, the heuristic method was lower, indicating that, for the disambiguation of ambiguous words, more sophisticated WSD methods are needed. Finally, it has been found that the use of multidocument information assists the disambiguation process. The contributions of this work can be divided between theoretical and technical. In theory, there is the research and analysis of WSD in multidocument scenario. Among the techniques contributions, WSD methods have been developed an annotated corpus and annotation tool targeted to the Portuguese language in Brazil that can advance research in WSD for the language
|
4 |
Investigação de métodos de desambiguação lexical de sentidos de verbos do português do Brasil / Research of word sense disambiguation methods for verbs in brazilian portugueseCabezudo, Marco Antonio Sobrevilla 28 August 2015 (has links)
A Desambiguação Lexical de Sentido (DLS) consiste em determinar o sentido mais apropriado da palavra em um contexto determinado, utilizando-se um repositório de sentidos pré-especificado. Esta tarefa é importante para outras aplicações, por exemplo, a tradução automática. Para o inglês, a DLS tem sido amplamente explorada, utilizando diferentes abordagens e técnicas, contudo, esta tarefa ainda é um desafio para os pesquisadores em semântica. Analisando os resultados dos métodos por classes gramaticais, nota-se que todas as classes não apresentam os mesmos resultados, sendo que os verbos são os que apresentam os piores resultados. Estudos ressaltam que os métodos de DLS usam informações superficiais e os verbos precisam de informação mais profunda para sua desambiguação, como frames sintáticos ou restrições seletivas. Para o português, existem poucos trabalhos nesta área e só recentemente tem-se investigado métodos de uso geral. Além disso, salienta-se que, nos últimos anos, têm sido desenvolvidos recursos lexicais focados nos verbos. Nesse contexto, neste trabalho de mestrado, visou-se investigar métodos de DLS de verbos em textos escritos em português do Brasil. Em particular, foram explorados alguns métodos tradicionais da área e, posteriormente, foi incorporado conhecimento linguístico proveniente da Verbnet.Br. Para subsidiar esta investigação, o córpus CSTNews foi anotado com sentidos de verbos usando a WordNet-Pr como repositório de sentidos. Os resultados obtidos mostraram que os métodos de DLS investigados não conseguiram superar o baseline mais forte e que a incorporação de conhecimento da VerbNet.Br produziu melhorias nos métodos, porém, estas melhorias não foram estatisticamente significantes. Algumas contribuições deste trabalho de mestrado foram um córpus anotado com sentidos de verbos, a criação de uma ferramenta que auxilie a anotação de sentidos, a investigação de métodos de DLS e o uso de informações especificas de verbos (provenientes da VerbNet.Br) na DLS de verbos. / Word Sense Disambiguation (WSD) aims at identifying the appropriate sense of a word in a given context, using a pre-specified sense-repository. This task is important to other applications as Machine Translation. For English, WSD has been widely studied, using different approaches and techniques, however, this task is still a challenge for researchers in Semantics. Analyzing the performance of different methods by the morphosyntactic class, note that not all classes have the same results, and the worst results are obtained for Verbs. Studies highlight that WSD methods use shallow information and Verbs need deeper information for its disambiguation, like syntactic frames or selectional restrictions. For Portuguese, there are few works in WSD and, recently, some works for general purpose. In addition, it is noted that, recently, have been developed lexical resources focused on Verbs. In this context, this master work aimed at researching WSD methods for verbs in texts written in Brazilian Portuguese. In particular, traditional WSD methods were explored and, subsequently, linguistic knowledge of VerbNet.Br was incorporated in these methods. To support this research, CSTNews corpus was annotated with verb senses using the WordNet-Pr as a sense-repository. The results showed that explored WSD methods did not outperform the hard baseline and the incorporation of VerbNet.Br knowledge yielded improvements in the methods, however, these improvements were not statistically significant. Some contributions of this work were the sense-annotated corpus, the creation of a tool for support the sense-annotation, the research of WSD methods for verbs and the use of specific information of verbs (from VerbNet.Br) in the WSD of verbs.
|
5 |
Investigação de métodos de desambiguação lexical de sentidos de verbos do português do Brasil / Research of word sense disambiguation methods for verbs in brazilian portugueseMarco Antonio Sobrevilla Cabezudo 28 August 2015 (has links)
A Desambiguação Lexical de Sentido (DLS) consiste em determinar o sentido mais apropriado da palavra em um contexto determinado, utilizando-se um repositório de sentidos pré-especificado. Esta tarefa é importante para outras aplicações, por exemplo, a tradução automática. Para o inglês, a DLS tem sido amplamente explorada, utilizando diferentes abordagens e técnicas, contudo, esta tarefa ainda é um desafio para os pesquisadores em semântica. Analisando os resultados dos métodos por classes gramaticais, nota-se que todas as classes não apresentam os mesmos resultados, sendo que os verbos são os que apresentam os piores resultados. Estudos ressaltam que os métodos de DLS usam informações superficiais e os verbos precisam de informação mais profunda para sua desambiguação, como frames sintáticos ou restrições seletivas. Para o português, existem poucos trabalhos nesta área e só recentemente tem-se investigado métodos de uso geral. Além disso, salienta-se que, nos últimos anos, têm sido desenvolvidos recursos lexicais focados nos verbos. Nesse contexto, neste trabalho de mestrado, visou-se investigar métodos de DLS de verbos em textos escritos em português do Brasil. Em particular, foram explorados alguns métodos tradicionais da área e, posteriormente, foi incorporado conhecimento linguístico proveniente da Verbnet.Br. Para subsidiar esta investigação, o córpus CSTNews foi anotado com sentidos de verbos usando a WordNet-Pr como repositório de sentidos. Os resultados obtidos mostraram que os métodos de DLS investigados não conseguiram superar o baseline mais forte e que a incorporação de conhecimento da VerbNet.Br produziu melhorias nos métodos, porém, estas melhorias não foram estatisticamente significantes. Algumas contribuições deste trabalho de mestrado foram um córpus anotado com sentidos de verbos, a criação de uma ferramenta que auxilie a anotação de sentidos, a investigação de métodos de DLS e o uso de informações especificas de verbos (provenientes da VerbNet.Br) na DLS de verbos. / Word Sense Disambiguation (WSD) aims at identifying the appropriate sense of a word in a given context, using a pre-specified sense-repository. This task is important to other applications as Machine Translation. For English, WSD has been widely studied, using different approaches and techniques, however, this task is still a challenge for researchers in Semantics. Analyzing the performance of different methods by the morphosyntactic class, note that not all classes have the same results, and the worst results are obtained for Verbs. Studies highlight that WSD methods use shallow information and Verbs need deeper information for its disambiguation, like syntactic frames or selectional restrictions. For Portuguese, there are few works in WSD and, recently, some works for general purpose. In addition, it is noted that, recently, have been developed lexical resources focused on Verbs. In this context, this master work aimed at researching WSD methods for verbs in texts written in Brazilian Portuguese. In particular, traditional WSD methods were explored and, subsequently, linguistic knowledge of VerbNet.Br was incorporated in these methods. To support this research, CSTNews corpus was annotated with verb senses using the WordNet-Pr as a sense-repository. The results showed that explored WSD methods did not outperform the hard baseline and the incorporation of VerbNet.Br knowledge yielded improvements in the methods, however, these improvements were not statistically significant. Some contributions of this work were the sense-annotated corpus, the creation of a tool for support the sense-annotation, the research of WSD methods for verbs and the use of specific information of verbs (from VerbNet.Br) in the WSD of verbs.
|
6 |
Desambiguação lexical de sentidos para o português por meio de uma abordagem multilíngue mono e multidocumento / Word Sense Disambiguation for portuguese through multilingual mono and multi-documentFernando Antônio Asevêdo Nóbrega 28 May 2013 (has links)
A ambiguidade lexical é considerada uma das principais barreiras para melhoria de aplicações do Processamento de Língua Natural (PLN). Neste contexto, tem-se a área de Desambiguação Lexical de Sentido (DLS), cujo objetivo é desenvolver e avaliar métodos que determinem o sentido correto de uma palavra em um determinado contexto por meio de um conjunto finito de possíveis significados. A DLS é empregada, principalmente, no intuito de prover recursos e ferramentas para diminuir problemas de ambiguidade e, consequentemente, contribuir para melhorias de resultados em outras áreas do PLN. Para o Português do Brasil, pouco se tem pesquisado nesta área, havendo alguns trabalhos bem específicos de domínio. Outro fator importante é que diversas áreas do PLN engajam-se no cenário multidocumento, onde a computação é efetuada sobre uma coleção de textos, todavia, não há relato de trabalhos de DLS direcionados a este cenário, tampouco experimentos de desambiguação neste domínio. Portanto, neste trabalho de mestrado, objetivou-se o desenvolvimento de métodos de DLS de domínio geral voltado à língua Portuguesa do Brasil e o desenvolvimento de algoritmos de desambiguação que façam uso de informações multidocumento, bem como a experimentação e avaliação destes no cenário multidocumento. Para tanto, a fim de subsidiar experimentos, desenvolvimento e avaliação deste projeto, anotou-se manualmente o córpus CSTNews, caracterizado como um córpus multidocumento, utilizando a WordNet de Princeton como repositório de sentidos, que organiza os significados por meio de conjuntos de sinônimos ( synsets) e relações linguísticas entre estes. Foram desenvolvidos quatro métodos de DLS e algumas variações, sendo: um método heurístico (para aferir valores de baseline); variações do algoritmo de Lesk (1986); adaptação do algoritmo de Mihalcea and Moldovan (1999); e uma variação do método de Lesk para o cenário multidocumento. Foram realizados três experimentos para avaliação dos métodos, cujos objetivos foram: determinar o desempenho geral dos algoritmos em todo o córpus; avaliar a qualidade de desambiguação de palavras mais ambíguas no córpus; e verificar o ganho de qualidade da desambiguação ao empregar informação multidocumento. Após estes experimentos, pôde-se observar que o método heurístico apresenta um melhor resultado geral. Contudo, é importante ressaltar que a maioria das palavras anotadas no córpus tiveram apenas um synset, que, normalmente, era o mais frequente, o que, consequentemente, apresenta um cenário mais propício ao método heurístico. Outro fato importante foi que, neste cenário, a diferença de desempenho entre o método de DLS multidocumento e o heurístico é estatisticamente irrelevante. Já para a desambiguação de palavras mais ambíguas, o método heurístico foi inferior, evidenciando que, para a desambiguação de palavras mais ambíguas, são necessários métodos mais sofisticados de DLS. Por fim, verificou-se que a utilização de informação multidocumento auxilia o processo de desambiguação. As contribuições deste trabalho podem ser agrupadas entre teóricas e técnicas. Nas teóricas, tem-se a investigação e análises da DLS no cenário multidocumento. Entre as contribuições técnicas, foram desenvolvidos métodos de DLS, um córpus anotado e uma ferramenta de anotação direcionados à língua Portuguesa do Brasil, que podem avançar as pesquisas em DLS para o idioma / The lexical ambiguity is considered one of the main barries to improving applications of Natural Language Processing (NLP). In this context, it has benn the area of Word Sense Disambiguation (WSD), whose goal is to develop and evaluate methods to determine the correct sense of a word in a give context by a nite set of possible meanings. The DLS is used mainly in order to provide resources and tools to reduce problems of ambiguity and thus contribute to improved results in other areas of NLP. In the Portuguese of Brazil, little has been researched in this area, with some work and specic domain. Another important factor is that many areas of NLP commit themselves in multidocument scenario, where the computation is performed on a collection of texts, however, there is no report of WSD work directed to this scenario, either disambiguation experiments in this eld. Therefore, this master thesis aimed to develop methods of WSD general domain facing the Portuguese language in Brazil and the development of algorithms that make use of disambiguation multidocument informations, as well as experimentation and evaluation of the multidocument scenario. Therefore, in order to support experiments, development and evaluation of this project, the corpus CSTNews with 50 document collections, was manually annotated by means of synsets of the WordNet Princeton. Four methods were developed: A heuristic method (to measure values fo baseline); variations of the Lesk (1986) algorithm; a adaptation of the Mihalcea and Moldovan (1999) algorithm; and a variation of the Lesk method for multidocument scenario. Three experiments were conducted to evaluate the methods, whose objectives were to determine the general performance algorithms across the corpus; evaluate the quality of disambiguation of most ambiguous words in the corpus, and check the gain quality of disambiguation by employing information multidocumento. After these experiments, it was observed that the heuristic method presents a better overall result. However, it is important to note that most of the words in the annotated corpus had only one synset, which usually was the most frequent, which, in turn, presents a scenario more conducive to the heuristic method. Another important fact was that in this scenario, the performance dierence between the heuristic method and multidocument algorithm was statistically irrelevant. As for the disambiguation of most ambiguous words, the heuristic method was lower, indicating that, for the disambiguation of ambiguous words, more sophisticated WSD methods are needed. Finally, it has been found that the use of multidocument information assists the disambiguation process. The contributions of this work can be divided between theoretical and technical. In theory, there is the research and analysis of WSD in multidocument scenario. Among the techniques contributions, WSD methods have been developed an annotated corpus and annotation tool targeted to the Portuguese language in Brazil that can advance research in WSD for the language
|
7 |
Desambiguação automática de substantivos em corpus do português brasileiro / Word sense disambiguation in Brazilian Portuguese corpusSilva, Viviane Santos da 19 August 2016 (has links)
O fenômeno da ambiguidade lexical foi o tópico central desta pesquisa, especialmente no que diz respeito às relações entre acepções de formas gráficas ambíguas e aos padrões de distribuição de acepções de palavras polissêmicas na língua, isto é, de palavras cujas acepções são semanticamente relacionadas. Este trabalho situa-se como uma proposta de interface entre explorações computacionais da ambiguidade lexical, especificamente de processamento de linguagem natural, e investigações de cunho teórico sobre o fenômeno do significado lexical. Partimos das noções de polissemia e de homonímia como correspondentes, respectivamente, ao caso de uma palavra com múltiplas acepções relacionadas e ao de duas (ou mais) palavras cujas formas gráficas coincidem, mas que apresentam acepções não relacionadas sincronicamente. Como objetivo último deste estudo, pretendia-se confirmar se as palavras mais polissêmicas teriam acepções menos uniformemente distribuídas no corpus, apresentando acepções predominantes, que ocorreriam com maior frequência. Para analisar esses aspectos, implementamos um algoritmo de desambiguação lexical, uma versão adaptada do algoritmo de Lesk (Lesk, 1986; Jurafsky & Martin, 2000), escolhido com base nos recursos linguísticos disponíveis para o português. Tendo como hipótese a noção de que palavras mais frequentes na língua tenderiam a ser mais polissêmicas, selecionamos do corpus (Mac-Morpho) aquelas com maiores ocorrências. Considerando-se o interesse em palavras de conteúdo e em casos de ambiguidade mais estritamente em nível semântico, optamos por realizar os testes apresentados neste trabalho apenas para substantivos. Os resultados obtidos com o algoritmo de desambiguação que implementamos superaram o método baseline baseado na heurística da acepção mais frequente: obtivemos 63% de acertos contra 50% do baseline para o total dos dados desambiguados. Esses resultados foram obtidos através do procedimento de desambiguação de pseudo-palavras (formadas ao acaso), utilizado em casos em que não se tem à disposição corpora semanticamente anotados. No entanto, em razão da dependência de inventários fixos de acepções oriundos de dicionários, pesquisamos maneiras alternativas de categorizar as acepções de uma palavra. Tomando como base o trabalho de Sproat & VanSanten (2001), implementamos um método que permite atribuir valores numéricos que atestam o quanto uma palavra se afastou da monossemia dentro de um determinado corpus. Essa medida, cunhada pelos autores do trabalho original como índice de polissemia, baseia-se no agrupamento de palavras co-ocorrentes à palavra-alvo da desambiguação de acordo com suas similaridades contextuais. Propusemos, neste trabalho, o uso de uma segunda medida, mencionada pelos autores apenas como um exemplo das aplicações potenciais do método a serem exploradas: a clusterização de co-ocorrentes com base em similaridades de contextos de uso. Essa segunda medida é obtida de forma que se possa verificar a proximidade entre acepções e a quantidade de acepções que uma palavra exibe no corpus. Alguns aspectos apontados nos resultados indicam o potencial do método de clusterização: os agrupamentos de co-ocorrentes obtidos são ponderados, ressaltando os grupos mais proeminentes de vizinhos da palavra-alvo; o fato de que os agrupamentos aproximam-se uns dos outros por medidas de similaridade contextual, o que pode servir para distinguir tendências homonímicas ou polissêmicas. Como exemplo, temos os clusters obtidos para a palavra produção: um relativo à ideia de produção literária e outro relativo à de produção agrícola. Esses dois clusters apresentaram distanciamento considerável, situando-se na faixa do que seria considerado um caso de polissemia, e apresentaram ambos pesos significativos, isto é, foram compostos por palavras mais relevantes. Identificamos três fatores principais que limitaram as análises a partir dos dados obtidos: o viés político-jornalístico do corpus que utilizamos (Mac-Morpho) e a necessidade de serem feitos mais testes variando os parâmetros de seleção de coocorrentes, uma vez que os parâmetros que utilizamos devem variar para outros corpora e, especialmente, pelo fato de termos realizados poucos testes para definir quais valores utilizaríamos para esses parâmetro, que são decisivos para a quantidade de palavras co-ocorrentes relevantes para os contextos de uso da palavra-alvo. Considerando-se tanto as vantagens quanto as limitações que observamos a partir dos resultados da clusterização, planejamos delinear um método sincrônico (que prescinde da documentação histórica das palavras) e computacional que permita distinguir casos de polissemia e de homonímia de forma mais sistemática e abrangendo uma maior quantidade de dados. Entendemos que um método dessa natureza pode ser de grade valia para os estudos do significado no nível lexical, permitindo o estabelecimento de um método objetivo e baseado em dados de uso da língua que vão além de exemplos pontuais. / The phenomenon of lexical ambiguity was the central topic of this research, especially with regard to relations between meanings of ambiguous graphic forms, and to patterns of distribution of the meanings of polysemous words in the language, that is, of words whose meanings are semantically related. This work is set on the interface between computational explorations of lexical ambiguity, specifically natural language processing, and theoretical investigations on the nature of research on the lexical meaning phenomenon. We assume the notions of polysemy and homonymy as corresponding, respectively, to the case of a word with multiple related meanings, and two (or more) words whose graphic forms coincide, but have unrelated meanings. The ultimate goal of this study was to confirm that the most polysemous words have meanings less evenly distributed in the corpus, with predominant meanings which occur more frequently. To examine these aspects, we implemented a word sense disambiguation algorithm, an adapted version of Lesk algorithm (Lesk, 1986; Jurafsky & Martin, 2000), chosen on the basis of the availability of language resources in Portuguese. From the hypothesis that the most frequent words in the language tend to be more polysemic, we selected from the corpus (Mac-Morpho) those words with the highest number occurrences. Considering our interest in content words and in cases of ambiguity more strictly to the semantic level, we decided to conduct the tests presented in this research only for nouns. The results obtained with the disambiguation algorithm implemented surpassed those of the baseline method based on the heuristics of the most frequent sense: we obtained 63% accuracy against 50% of baseline for all the disambiguated data. These results were obtained with the disambiguation procedure of pseudowords (formed at random), which used in cases where semantically annotated corpora are not available. However, due to the dependence of this disambiguation method on fixed inventories of meanings from dictionaries, we searched for alternative ways of categorizing the meanings of a word. Based on the work of Sproat & VanSanten (2001), we implemented a method for assigning numerical values that indicate how much one word is away from monosemy within a certain corpus. This measure, named by the authors of the original work as polysemy index, groups co-occurring words of the target noun according to their contextual similarities. We proposed in this paper the use of a second measure, mentioned by the authors as an example of the potential applications of the method to be explored: the clustering of the co-occurrent words based on their similarities of contexts of use. This second measurement is obtained so as to show the closeness of meanings and the amount of meanings that a word displays in the corpus. Some aspects pointed out in the results indicate the potential of the clustering method: the obtained co-occurring clusters are weighted, highlighting the most prominent groups of neighbors of the target word; the fact that the clusters aproximate from each other to each other on the basis of contextual similarity measures, which can be used to distinguish homonymic from polysemic trends. As an example, we have the clusters obtained for the word production, one referring to the idea of literary production, and the other referring to the notion of agricultural production. These two clusters exhibited considerable distance, standing in the range of what would be considered a case of polysemy, and both showed significant weights, that is, were composed of significant and distintictive words. We identified three main factors that have limited the analysis of the data: the political-journalistic bias of the corpus we use (Mac-Morpho) and the need for further testing by varying the selection parameters of relevant cooccurent words, since the parameters used shall vary for other corpora, and especially because of the fact that we conducted only a few tests to determine the values for these parameters, which are decisive for the amount of relevant co-occurring words for the target word. Considering both the advantages and the limitations we observe from the results of the clusterization method, we plan to design a synchronous (which dispenses with the historical documentation of the words) and, computational method to distinguish cases of polysemy and homonymy more systematically and covering a larger amount of data. We understand that a method of this nature can be invaluable for studies of the meaning on the lexical level, allowing the establishment of an objective method based on language usage data and, that goes beyond specific examples.
|
8 |
Desambiguação lexical de revisões de itens aplicada em sistemas de recomendação / Word sense disambiguation of items revisions applied in recommendation systemsMarinho, Ronnie Shida 14 May 2018 (has links)
Com o intuito de auxiliar usuários na procura por produtos relevantes, sistemas Web integraram módulos de recomendação de itens, que selecionam automaticamente conteúdo de acordo com os interesses de cada indivíduo. Apesar de existirem diversas abordagens para calcular recomendações de acordo com interações disponíveis no sistema, a maioria delas sofre com a carência de informações utilizadas para caracterizar as preferências dos usuários e as descrições dos itens. Trabalhos recentes sobre sistemas de recomendação têm estudado a possibilidade de utilizar revisões de usuários como fonte de metadados, já que são criadas colaborativamente pelos indivíduos. Entretanto, ainda carecem de estudos sobre como organizar e estruturar os dados de maneira semântica. Desta maneira, este trabalho tem como objetivo desenvolver técnicas de construção de representação de itens baseadas em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que métodos distintos de desambiguação lexical de sentido causam na precisão da recomendação, sendo avaliada no cenário de predição de notas. A partir dessa estruturação, é possível caracterizar os itens e usuários de maneira mais eficiente, favorecendo o cálculo da recomendação de acordo com as preferências do indivíduo. / Web systems integrate recommending modules for items, which automatically select content according to the interest of each individual in order to help users in the search for relevant products. Although there are diverse recommending approaches to calculate recommendations according to users preferences, most of them lack information to characterize users preferences and item descriptions. Recent researches on recommender systems have studied the possibility of using users reviews as source of metadata, because users create them collaboratively. However, the literature still lacks studies about how to organize and structure data in a semantic manner. Therefore, this study aims to develop techniques for constructing the representation of items based on collaborative descriptions for recommender systems. For this reason, it is also aimed to analyze the impact caused by distinct methods of word sense disambiguation on the precision of recommendations, which we analyzed in the scenario of ratings predictions. Our results showed that we can characterize users and items in a more efficient way, favoring the calculation of recommendations according to users preferences.
|
9 |
Desambiguação lexical de revisões de itens aplicada em sistemas de recomendação / Word sense disambiguation of items revisions applied in recommendation systemsRonnie Shida Marinho 14 May 2018 (has links)
Com o intuito de auxiliar usuários na procura por produtos relevantes, sistemas Web integraram módulos de recomendação de itens, que selecionam automaticamente conteúdo de acordo com os interesses de cada indivíduo. Apesar de existirem diversas abordagens para calcular recomendações de acordo com interações disponíveis no sistema, a maioria delas sofre com a carência de informações utilizadas para caracterizar as preferências dos usuários e as descrições dos itens. Trabalhos recentes sobre sistemas de recomendação têm estudado a possibilidade de utilizar revisões de usuários como fonte de metadados, já que são criadas colaborativamente pelos indivíduos. Entretanto, ainda carecem de estudos sobre como organizar e estruturar os dados de maneira semântica. Desta maneira, este trabalho tem como objetivo desenvolver técnicas de construção de representação de itens baseadas em descrições colaborativas para um sistema de recomendação. Objetiva-se analisar o impacto que métodos distintos de desambiguação lexical de sentido causam na precisão da recomendação, sendo avaliada no cenário de predição de notas. A partir dessa estruturação, é possível caracterizar os itens e usuários de maneira mais eficiente, favorecendo o cálculo da recomendação de acordo com as preferências do indivíduo. / Web systems integrate recommending modules for items, which automatically select content according to the interest of each individual in order to help users in the search for relevant products. Although there are diverse recommending approaches to calculate recommendations according to users preferences, most of them lack information to characterize users preferences and item descriptions. Recent researches on recommender systems have studied the possibility of using users reviews as source of metadata, because users create them collaboratively. However, the literature still lacks studies about how to organize and structure data in a semantic manner. Therefore, this study aims to develop techniques for constructing the representation of items based on collaborative descriptions for recommender systems. For this reason, it is also aimed to analyze the impact caused by distinct methods of word sense disambiguation on the precision of recommendations, which we analyzed in the scenario of ratings predictions. Our results showed that we can characterize users and items in a more efficient way, favoring the calculation of recommendations according to users preferences.
|
10 |
Desambiguação automática de substantivos em corpus do português brasileiro / Word sense disambiguation in Brazilian Portuguese corpusViviane Santos da Silva 19 August 2016 (has links)
O fenômeno da ambiguidade lexical foi o tópico central desta pesquisa, especialmente no que diz respeito às relações entre acepções de formas gráficas ambíguas e aos padrões de distribuição de acepções de palavras polissêmicas na língua, isto é, de palavras cujas acepções são semanticamente relacionadas. Este trabalho situa-se como uma proposta de interface entre explorações computacionais da ambiguidade lexical, especificamente de processamento de linguagem natural, e investigações de cunho teórico sobre o fenômeno do significado lexical. Partimos das noções de polissemia e de homonímia como correspondentes, respectivamente, ao caso de uma palavra com múltiplas acepções relacionadas e ao de duas (ou mais) palavras cujas formas gráficas coincidem, mas que apresentam acepções não relacionadas sincronicamente. Como objetivo último deste estudo, pretendia-se confirmar se as palavras mais polissêmicas teriam acepções menos uniformemente distribuídas no corpus, apresentando acepções predominantes, que ocorreriam com maior frequência. Para analisar esses aspectos, implementamos um algoritmo de desambiguação lexical, uma versão adaptada do algoritmo de Lesk (Lesk, 1986; Jurafsky & Martin, 2000), escolhido com base nos recursos linguísticos disponíveis para o português. Tendo como hipótese a noção de que palavras mais frequentes na língua tenderiam a ser mais polissêmicas, selecionamos do corpus (Mac-Morpho) aquelas com maiores ocorrências. Considerando-se o interesse em palavras de conteúdo e em casos de ambiguidade mais estritamente em nível semântico, optamos por realizar os testes apresentados neste trabalho apenas para substantivos. Os resultados obtidos com o algoritmo de desambiguação que implementamos superaram o método baseline baseado na heurística da acepção mais frequente: obtivemos 63% de acertos contra 50% do baseline para o total dos dados desambiguados. Esses resultados foram obtidos através do procedimento de desambiguação de pseudo-palavras (formadas ao acaso), utilizado em casos em que não se tem à disposição corpora semanticamente anotados. No entanto, em razão da dependência de inventários fixos de acepções oriundos de dicionários, pesquisamos maneiras alternativas de categorizar as acepções de uma palavra. Tomando como base o trabalho de Sproat & VanSanten (2001), implementamos um método que permite atribuir valores numéricos que atestam o quanto uma palavra se afastou da monossemia dentro de um determinado corpus. Essa medida, cunhada pelos autores do trabalho original como índice de polissemia, baseia-se no agrupamento de palavras co-ocorrentes à palavra-alvo da desambiguação de acordo com suas similaridades contextuais. Propusemos, neste trabalho, o uso de uma segunda medida, mencionada pelos autores apenas como um exemplo das aplicações potenciais do método a serem exploradas: a clusterização de co-ocorrentes com base em similaridades de contextos de uso. Essa segunda medida é obtida de forma que se possa verificar a proximidade entre acepções e a quantidade de acepções que uma palavra exibe no corpus. Alguns aspectos apontados nos resultados indicam o potencial do método de clusterização: os agrupamentos de co-ocorrentes obtidos são ponderados, ressaltando os grupos mais proeminentes de vizinhos da palavra-alvo; o fato de que os agrupamentos aproximam-se uns dos outros por medidas de similaridade contextual, o que pode servir para distinguir tendências homonímicas ou polissêmicas. Como exemplo, temos os clusters obtidos para a palavra produção: um relativo à ideia de produção literária e outro relativo à de produção agrícola. Esses dois clusters apresentaram distanciamento considerável, situando-se na faixa do que seria considerado um caso de polissemia, e apresentaram ambos pesos significativos, isto é, foram compostos por palavras mais relevantes. Identificamos três fatores principais que limitaram as análises a partir dos dados obtidos: o viés político-jornalístico do corpus que utilizamos (Mac-Morpho) e a necessidade de serem feitos mais testes variando os parâmetros de seleção de coocorrentes, uma vez que os parâmetros que utilizamos devem variar para outros corpora e, especialmente, pelo fato de termos realizados poucos testes para definir quais valores utilizaríamos para esses parâmetro, que são decisivos para a quantidade de palavras co-ocorrentes relevantes para os contextos de uso da palavra-alvo. Considerando-se tanto as vantagens quanto as limitações que observamos a partir dos resultados da clusterização, planejamos delinear um método sincrônico (que prescinde da documentação histórica das palavras) e computacional que permita distinguir casos de polissemia e de homonímia de forma mais sistemática e abrangendo uma maior quantidade de dados. Entendemos que um método dessa natureza pode ser de grade valia para os estudos do significado no nível lexical, permitindo o estabelecimento de um método objetivo e baseado em dados de uso da língua que vão além de exemplos pontuais. / The phenomenon of lexical ambiguity was the central topic of this research, especially with regard to relations between meanings of ambiguous graphic forms, and to patterns of distribution of the meanings of polysemous words in the language, that is, of words whose meanings are semantically related. This work is set on the interface between computational explorations of lexical ambiguity, specifically natural language processing, and theoretical investigations on the nature of research on the lexical meaning phenomenon. We assume the notions of polysemy and homonymy as corresponding, respectively, to the case of a word with multiple related meanings, and two (or more) words whose graphic forms coincide, but have unrelated meanings. The ultimate goal of this study was to confirm that the most polysemous words have meanings less evenly distributed in the corpus, with predominant meanings which occur more frequently. To examine these aspects, we implemented a word sense disambiguation algorithm, an adapted version of Lesk algorithm (Lesk, 1986; Jurafsky & Martin, 2000), chosen on the basis of the availability of language resources in Portuguese. From the hypothesis that the most frequent words in the language tend to be more polysemic, we selected from the corpus (Mac-Morpho) those words with the highest number occurrences. Considering our interest in content words and in cases of ambiguity more strictly to the semantic level, we decided to conduct the tests presented in this research only for nouns. The results obtained with the disambiguation algorithm implemented surpassed those of the baseline method based on the heuristics of the most frequent sense: we obtained 63% accuracy against 50% of baseline for all the disambiguated data. These results were obtained with the disambiguation procedure of pseudowords (formed at random), which used in cases where semantically annotated corpora are not available. However, due to the dependence of this disambiguation method on fixed inventories of meanings from dictionaries, we searched for alternative ways of categorizing the meanings of a word. Based on the work of Sproat & VanSanten (2001), we implemented a method for assigning numerical values that indicate how much one word is away from monosemy within a certain corpus. This measure, named by the authors of the original work as polysemy index, groups co-occurring words of the target noun according to their contextual similarities. We proposed in this paper the use of a second measure, mentioned by the authors as an example of the potential applications of the method to be explored: the clustering of the co-occurrent words based on their similarities of contexts of use. This second measurement is obtained so as to show the closeness of meanings and the amount of meanings that a word displays in the corpus. Some aspects pointed out in the results indicate the potential of the clustering method: the obtained co-occurring clusters are weighted, highlighting the most prominent groups of neighbors of the target word; the fact that the clusters aproximate from each other to each other on the basis of contextual similarity measures, which can be used to distinguish homonymic from polysemic trends. As an example, we have the clusters obtained for the word production, one referring to the idea of literary production, and the other referring to the notion of agricultural production. These two clusters exhibited considerable distance, standing in the range of what would be considered a case of polysemy, and both showed significant weights, that is, were composed of significant and distintictive words. We identified three main factors that have limited the analysis of the data: the political-journalistic bias of the corpus we use (Mac-Morpho) and the need for further testing by varying the selection parameters of relevant cooccurent words, since the parameters used shall vary for other corpora, and especially because of the fact that we conducted only a few tests to determine the values for these parameters, which are decisive for the amount of relevant co-occurring words for the target word. Considering both the advantages and the limitations we observe from the results of the clusterization method, we plan to design a synchronous (which dispenses with the historical documentation of the words) and, computational method to distinguish cases of polysemy and homonymy more systematically and covering a larger amount of data. We understand that a method of this nature can be invaluable for studies of the meaning on the lexical level, allowing the establishment of an objective method based on language usage data and, that goes beyond specific examples.
|
Page generated in 0.0603 seconds