Spelling suggestions: "subject:"descoberta dde conhecimento em based"" "subject:"descoberta dde conhecimento em cases""
1 |
"Desenvolvimento de um Framework para Análise Visual de Informações Suportando Data Mining" / "Development of a Framework for Visual Analysis of Information with Data Mining suport"Rodrigues Junior, Jose Fernando 22 July 2003 (has links)
No presente documento são reunidas as colaborações de inúmeros trabalhos das áreas de Bancos de Dados, Descoberta de Conhecimento em Bases de Dados, Mineração de Dados, e Visualização de Informações Auxiliada por Computador que, juntos, estruturam o tema de pesquisa e trabalho da dissertação de Mestrado: a Visualização de Informações. A teoria relevante é revista e relacionada para dar suporte às atividades conclusivas teóricas e práticas relatadas no trabalho. O referido trabalho, embasado pela substância teórica pesquisada, faz diversas contribuições à ciência em voga, a Visualização de Informações, apresentando-as através de propostas formalizadas no decorrer deste texto e através de resultados práticos na forma de softwares habilitados à exploração visual de informações. As idéias apresentadas se baseiam na exibição visual de análises numéricas estatísticas básicas, frequenciais (Frequency Plot), e de relevância (Relevance Plot). São relatadas também as contribuições à ferramenta FastMapDB do Grupo de Bases de Dados e Imagens do ICMC-USP em conjunto com os resultados de sua utilização. Ainda, é apresentado o Arcabouço, previsto no projeto original, para construção de ferramentas visuais de análise, sua arquitetura, características e utilização. Por fim, é descrito o Pipeline de visualização decorrente da junção entre o Arcabouço de visualização e a ferramenta FastMapDB. O trabalho se encerra com uma breve análise da ciência de Visualização de Informações com base na literatura estudada, sendo traçado um cenário do estado da arte desta disciplina com sugestões de futuros trabalhos. / In the present document are joined the collaborations of many works from the fields of Databases, Knowledge Discovery in Databases, Data Mining, and Computer-based Information Visualization, collaborations that, together, define the structure of the research theme and the work of the Masters Dissertation presented herein. This research topic is the Information Visualization discipline, and its relevant theory is reviewed and related to support the concluding activities, both theoretical and practical, reported in this work. The referred work, anchored by the theoretical substance that was studied, makes several contributions to the science in investigation, the Information Visualization, presenting them through formalized proposals described across this text, and through practical results in the form of software enabled to the visual exploration of information. The presented ideas are based on the visual exhibition of numeric analysis, named basic statistics, frequency analysis (Frequency Plot), and according to a relevance analysis (Relevance Plot). There are also reported the contributions to the FastMapDB tool, a visual exploration tool built by the Grupo de Bases de Dados e Imagens do ICMC-USP, the performed enhancements are listed as achieved results in the text. Also, it is presented the Framework, as previewed in this work's original proposal, projected to allow the construction of visual analysis tools; besides its description are listed its architecture, characteristics and utilization. At last, it is described the visualization Pipeline that emerges from the joining of the visualization Framework and the FastMapDB tool. The work ends with a brief analysis of the Information Visualization science based on the studied literature, it is delineated a scenario of the state of the art of this discipline along with suggestions for future work.
|
2 |
"Desenvolvimento de um Framework para Análise Visual de Informações Suportando Data Mining" / "Development of a Framework for Visual Analysis of Information with Data Mining suport"Jose Fernando Rodrigues Junior 22 July 2003 (has links)
No presente documento são reunidas as colaborações de inúmeros trabalhos das áreas de Bancos de Dados, Descoberta de Conhecimento em Bases de Dados, Mineração de Dados, e Visualização de Informações Auxiliada por Computador que, juntos, estruturam o tema de pesquisa e trabalho da dissertação de Mestrado: a Visualização de Informações. A teoria relevante é revista e relacionada para dar suporte às atividades conclusivas teóricas e práticas relatadas no trabalho. O referido trabalho, embasado pela substância teórica pesquisada, faz diversas contribuições à ciência em voga, a Visualização de Informações, apresentando-as através de propostas formalizadas no decorrer deste texto e através de resultados práticos na forma de softwares habilitados à exploração visual de informações. As idéias apresentadas se baseiam na exibição visual de análises numéricas estatísticas básicas, frequenciais (Frequency Plot), e de relevância (Relevance Plot). São relatadas também as contribuições à ferramenta FastMapDB do Grupo de Bases de Dados e Imagens do ICMC-USP em conjunto com os resultados de sua utilização. Ainda, é apresentado o Arcabouço, previsto no projeto original, para construção de ferramentas visuais de análise, sua arquitetura, características e utilização. Por fim, é descrito o Pipeline de visualização decorrente da junção entre o Arcabouço de visualização e a ferramenta FastMapDB. O trabalho se encerra com uma breve análise da ciência de Visualização de Informações com base na literatura estudada, sendo traçado um cenário do estado da arte desta disciplina com sugestões de futuros trabalhos. / In the present document are joined the collaborations of many works from the fields of Databases, Knowledge Discovery in Databases, Data Mining, and Computer-based Information Visualization, collaborations that, together, define the structure of the research theme and the work of the Masters Dissertation presented herein. This research topic is the Information Visualization discipline, and its relevant theory is reviewed and related to support the concluding activities, both theoretical and practical, reported in this work. The referred work, anchored by the theoretical substance that was studied, makes several contributions to the science in investigation, the Information Visualization, presenting them through formalized proposals described across this text, and through practical results in the form of software enabled to the visual exploration of information. The presented ideas are based on the visual exhibition of numeric analysis, named basic statistics, frequency analysis (Frequency Plot), and according to a relevance analysis (Relevance Plot). There are also reported the contributions to the FastMapDB tool, a visual exploration tool built by the Grupo de Bases de Dados e Imagens do ICMC-USP, the performed enhancements are listed as achieved results in the text. Also, it is presented the Framework, as previewed in this work's original proposal, projected to allow the construction of visual analysis tools; besides its description are listed its architecture, characteristics and utilization. At last, it is described the visualization Pipeline that emerges from the joining of the visualization Framework and the FastMapDB tool. The work ends with a brief analysis of the Information Visualization science based on the studied literature, it is delineated a scenario of the state of the art of this discipline along with suggestions for future work.
|
3 |
Integrando mineração de séries temporais e fractais para encontrar padrões e eventos extremos em bases de dados climáticas e de sensoriamento remoto / Integrating time series mining and fractals to discover patterns and extreme events in climate and remote sensing databasesRomani, Luciana Alvim Santos 13 December 2010 (has links)
Esta tese apresenta novos metodos baseados na teoria dos fractais e em tecnicas de mineração de dados para dar suporte ao monitoramento agrícola em escala regional, mais especicamente areas com plantações de cana-de-açucar que tem um papel importante na economia brasileira como uma alternativa viavel para a substituição de combustíveis fósseis. Uma vez que o clima tem um grande impacto na agricultura, os agrometeorologistas utilizam dados climáticos associados a índices agrometeorológicos e mais recentemente dados provenientes de satélites para apoiar a tomada de decisão. Neste sentido, foi proposto um método que utiliza a dimensão fractal para identicar mudanças de tendências nas séries climáticas juntamente com um módulo de análise estatística para definir quais atributos são responsáveis por essas alterações de comportamento. Além disso, foram propostos dois métodos de medidas de similaridade para auxiliar na comparação de diferentes regiões agrícolas representadas por múltiplas variáveis provenientes de dados meteorológicos e imagens de sensoriamento remoto. Diante da importância de se estudar os extremos climáticos que podem se intensicar dado os cenários que preveem mudanças globais no clima, foi proposto o algoritmo CLIPSMiner que identifica padrões relevantes e extremos em séries climáticas. CLIPSMiner também permite a identificação de correlação de múltiplas séries considerando defasagem de tempo e encontra padrões de acordo com parâmetros que podem ser calibrados pelos usuários. A busca por padrões de associação entre séries foi alcançada por meio de duas abordagens distintas. A primeira delas integrou o cálculo da correlação de dimensão fractal com uma técnica para tornar os valores contínuos das séries em intervalos discretos e um algoritmo de regras de associação gerando o método Apriori-FD. Embora tenha identificado padrões interessantes em relação a temperatura, este método não conseguiu lidar de forma apropriada com defasagem temporal. Foi proposto então o algoritmo CLEARMiner que de forma não-supervisionada minera padrões em uma série associando-os a padrões em outras séries considerando a possibilidade de defasagem temporal. Os métodos propostos foram comparados a técnicas similares e avaliados por um grupo composto por meteorologistas, agrometeorologistas e especialistas em sensoriamento remoto. Os experimentos realizados mostraram que a aplicação de técnicas de mineração de dados e fractais contribui para melhorar a análise dos dados agrometeorológicos e de satélite auxiliando no trabalho de pesquisadores, além de se configurar como uma ferramenta importante para apoiar a tomada de decisão no agronegócio / This thesis presents new methods based on fractal theory and data mining techniques to support agricultural monitoring in regional scale, specifically regions with sugar canefields. This commodity greatly contributes to the Brazilian economy since it is a viable alternative to replace fossil fuels. Since climate in uences the national agricultural production, researchers use climate data associated to agrometeorological indexes, and recently they also employed data from satellites to support decision making processes. In this context, we proposed a method that uses the fractal dimension to identify trend changes in climate series jointly with a statistical analysis module to define which attributes are responsible for the behavior alteration in the series. Moreover, we also proposed two methods of similarity measure to allow comparisons among different agricultural regions represented by multiples variables from meteorological data and remote sensing images. Given the importance of studying the extreme weather events, which could increase in intensity, duration and frequency according to different scenarios indicated by climate forecasting models, we proposed the CLIPSMiner algorithm to identify relevant patterns and extremes in climate series. CLIPSMiner also detects correlations among multiple time series considering time lag and finds patterns according to parameters, which can be calibrated by the users. We applied two distinct approaches in order to discover association patterns on time series. The first one is the Apriori-FD method that integrates an algorithm to perform attribute selection through applying the correlation fractal dimension, an algorithm of discretization to convert continuous values of series into discrete intervals, and a well-known association rules algorithm (Apriori). Although Apriori-FD has identified interesting patterns related to temperature, this method failed to appropriately deal with time lag. As a solution, we proposed CLEARMiner that is an unsupervised algorithm in order to mine the association patterns in one time series relating them to patterns in other series considering the possibility of time lag. The proposed methods were compared with similar techniques as well as assessed by a group of meteorologists, and specialists in agrometeorology and remote sensing. The experiments showed that applying data mining techniques and fractal theory can contribute to improve the analyses of agrometeorological and satellite data. These new techniques can aid researchers in their work on decision making and become important tools to support decision making in agribusiness
|
4 |
Integrando mineração de séries temporais e fractais para encontrar padrões e eventos extremos em bases de dados climáticas e de sensoriamento remoto / Integrating time series mining and fractals to discover patterns and extreme events in climate and remote sensing databasesLuciana Alvim Santos Romani 13 December 2010 (has links)
Esta tese apresenta novos metodos baseados na teoria dos fractais e em tecnicas de mineração de dados para dar suporte ao monitoramento agrícola em escala regional, mais especicamente areas com plantações de cana-de-açucar que tem um papel importante na economia brasileira como uma alternativa viavel para a substituição de combustíveis fósseis. Uma vez que o clima tem um grande impacto na agricultura, os agrometeorologistas utilizam dados climáticos associados a índices agrometeorológicos e mais recentemente dados provenientes de satélites para apoiar a tomada de decisão. Neste sentido, foi proposto um método que utiliza a dimensão fractal para identicar mudanças de tendências nas séries climáticas juntamente com um módulo de análise estatística para definir quais atributos são responsáveis por essas alterações de comportamento. Além disso, foram propostos dois métodos de medidas de similaridade para auxiliar na comparação de diferentes regiões agrícolas representadas por múltiplas variáveis provenientes de dados meteorológicos e imagens de sensoriamento remoto. Diante da importância de se estudar os extremos climáticos que podem se intensicar dado os cenários que preveem mudanças globais no clima, foi proposto o algoritmo CLIPSMiner que identifica padrões relevantes e extremos em séries climáticas. CLIPSMiner também permite a identificação de correlação de múltiplas séries considerando defasagem de tempo e encontra padrões de acordo com parâmetros que podem ser calibrados pelos usuários. A busca por padrões de associação entre séries foi alcançada por meio de duas abordagens distintas. A primeira delas integrou o cálculo da correlação de dimensão fractal com uma técnica para tornar os valores contínuos das séries em intervalos discretos e um algoritmo de regras de associação gerando o método Apriori-FD. Embora tenha identificado padrões interessantes em relação a temperatura, este método não conseguiu lidar de forma apropriada com defasagem temporal. Foi proposto então o algoritmo CLEARMiner que de forma não-supervisionada minera padrões em uma série associando-os a padrões em outras séries considerando a possibilidade de defasagem temporal. Os métodos propostos foram comparados a técnicas similares e avaliados por um grupo composto por meteorologistas, agrometeorologistas e especialistas em sensoriamento remoto. Os experimentos realizados mostraram que a aplicação de técnicas de mineração de dados e fractais contribui para melhorar a análise dos dados agrometeorológicos e de satélite auxiliando no trabalho de pesquisadores, além de se configurar como uma ferramenta importante para apoiar a tomada de decisão no agronegócio / This thesis presents new methods based on fractal theory and data mining techniques to support agricultural monitoring in regional scale, specifically regions with sugar canefields. This commodity greatly contributes to the Brazilian economy since it is a viable alternative to replace fossil fuels. Since climate in uences the national agricultural production, researchers use climate data associated to agrometeorological indexes, and recently they also employed data from satellites to support decision making processes. In this context, we proposed a method that uses the fractal dimension to identify trend changes in climate series jointly with a statistical analysis module to define which attributes are responsible for the behavior alteration in the series. Moreover, we also proposed two methods of similarity measure to allow comparisons among different agricultural regions represented by multiples variables from meteorological data and remote sensing images. Given the importance of studying the extreme weather events, which could increase in intensity, duration and frequency according to different scenarios indicated by climate forecasting models, we proposed the CLIPSMiner algorithm to identify relevant patterns and extremes in climate series. CLIPSMiner also detects correlations among multiple time series considering time lag and finds patterns according to parameters, which can be calibrated by the users. We applied two distinct approaches in order to discover association patterns on time series. The first one is the Apriori-FD method that integrates an algorithm to perform attribute selection through applying the correlation fractal dimension, an algorithm of discretization to convert continuous values of series into discrete intervals, and a well-known association rules algorithm (Apriori). Although Apriori-FD has identified interesting patterns related to temperature, this method failed to appropriately deal with time lag. As a solution, we proposed CLEARMiner that is an unsupervised algorithm in order to mine the association patterns in one time series relating them to patterns in other series considering the possibility of time lag. The proposed methods were compared with similar techniques as well as assessed by a group of meteorologists, and specialists in agrometeorology and remote sensing. The experiments showed that applying data mining techniques and fractal theory can contribute to improve the analyses of agrometeorological and satellite data. These new techniques can aid researchers in their work on decision making and become important tools to support decision making in agribusiness
|
5 |
Visualização de operações de junção em sistemas de bases de dados para mineração de dados. / Visualization of join operations in DBMS for data mining.Barioni, Maria Camila Nardini 13 June 2002 (has links)
Nas últimas décadas, a capacidade das empresas de gerar e coletar informações aumentou rapidamente. Essa explosão no volume de dados gerou a necessidade do desenvolvimento de novas técnicas e ferramentas que pudessem, além de processar essa enorme quantidade de dados, permitir sua análise para a descoberta de informações úteis, de maneira inteligente e automática. Isso fez surgir um proeminente campo de pesquisa para a extração de informação em bases de dados denominado Knowledge Discovery in Databases KDD, no geral técnicas de mineração de dados DM têm um papel preponderante. A obtenção de bons resultados na etapa de mineração de dados depende fortemente de quão adequadamente o preparo dos dados é realizado. Sendo assim, a etapa de extração de conhecimento (DM) no processo de KDD, é normalmente precedida de uma etapa de pré-processamento, onde os dados que porventura devam ser submetidos à etapa de DM são integrados em uma única relação. Um problema importante enfrentado nessa etapa é que, na maioria das vezes, o usuário ainda não tem uma idéia muito precisa dos dados que devem ser extraídos. Levando em consideração a grande habilidade de exploração da mente humana, este trabalho propõe uma técnica de visualização de dados armazenados em múltiplas relações de uma base de dados relacional, com o intuito de auxiliar o usuário na preparação dos dados a serem minerados. Esta técnica permite que a etapa de DM seja aplicada sobre múltiplas relações simultaneamente, trazendo as operações de junção para serem parte desta etapa. De uma maneira geral, a adoção de junções em ferramentas de DM não é prática, devido ao alto custo computacional associado às operações de junção. Entretanto, os resultados obtidos nas avaliações de desempenho da técnica proposta neste trabalho mostraram que ela reduz esse custo significativamente, tornando possível a exploração visual de múltiplas relações de uma maneira interativa. / In the last decades the capacity of information generation and accumulation increased quickly. With the explosive growth in the volume of data, new techniques and tools are being sought to process it and to automatically discover useful information from it, leading to techniques known as Knowledge Discovery in Databases KDD where, in general, data mining DM techniques play an important role. The results of applying data mining techniques on datasets are highly dependent on proper data preparation. Therefore, in traditional DM processes, data goes through a pre-processing step that results in just one table that is submitted to mining. An important problem faced during this step is that, most of the times, the analyst doesnt have a clear idea of what portions of data should be mined. This work reckons the strong ability of human beings to interpret data represented in graphical format, to develop a technique to visualize data from multiple tables, helping human analysts when preparing data to DM. This technique allows the data mining process to be applied over multiple relations at once, bringing the join operations to become part of this process. In general, the use of multiple tables in DM tools is not practical, due to the high computational cost required to explore them. Experimental evaluation of the proposed technique shows that it reduces this cost significantly, turning it possible to visually explore data from multiple tables in an interactive way.
|
6 |
Descoberta de conhecimento em bases de dados e estratégias de relacionamento com clientes: um estudo no setor de serviçosFernandes, Marcelo Pires 12 February 2008 (has links)
Made available in DSpace on 2016-03-15T19:26:36Z (GMT). No. of bitstreams: 1
Marcelo Pires Fernandes.pdf: 425391 bytes, checksum: 82c6fd61293544d4f47d5a6eec0f6580 (MD5)
Previous issue date: 2008-02-12 / The research problem to be studied is related to the way companies from the services industry use customer databases to discover useful knowledge about their customers, in order to improve the development of relationship strategies with them. This issue is important mainly because due to the increasing of concurrence and customer demand, the company needs to relate differently with their customers, so that thy can keep in its portfolio the most profitable ones. In this way, the theory has suggested a deeper integration among distinct disciplines as Relationship Marketing, CRM and Data Mining. In this current study, it was investigated the
way the theory presents and describes database analysis processes and, as a result, some proposals were found out, that segment the processes of discovering knowledge in databases in stages like problem understanding, data understanding, data preparation, data modeling data, model evaluation and deployment. The target population was composed by companies from the services industry from São Paulo and Rio de Janeiro cities and a quantitative research was made by applying a questionnaire to 67 professionals from the target population. In this research, themes as utilization level from stages of process of discovering knowledge in databases, utilization level of data mining techniques and utilization level of relationship strategies were investigated. It was discovered that the companies researched have a high utilization level of the stages of knowledge discovery identified in the theory, just only a
small part of the data mining techniques are uniformly used by the companies researched and, at last, the strategies with the highest utilization levels are that related to the acquisition of new customers and identification of profitable ones. This last discover was a little bit surprising, because it is opposed to the way of thinking of some authors who defend
companies should focus on their relationship strategies in the customer retention. These results can be used to support companies, in subjects related to the development of customer relationship strategies, based in an integrated analysis of business issues, customer information, as well quantitative models of analysis from this information, in order to turn it into useful knowledge to the making decision. / O problema de pesquisa a ser investigado está associado ao modo como empresas do setor de serviços utilizam bases de dados para descobrir conhecimento sobre o cliente e embasar o desenvolvimento de estratégias de relacionamento. Este tema é importante, visto que em função do aumento da concorrência e da exigência dos clientes, as empresas precisam tratar seus clientes de forma diferenciada, de forma a manter em sua carteira aqueles mais rentáveis. Neste sentido, a literatura tem sugerido uma integração cada vez mais intensa entre disciplinas como Marketing de Relacionamento, CRM e Mineração de Dados. O presente trabalho estudou o modo como a literatura apresenta e descreve processos de análise de bases de dados e algumas propostas foram encontradas, propostas que segmentam o processo de descoberta de conhecimento em bases de dados em etapas como entendimento do problema, entendimento e preparação dos dados, modelagem dos dados, avaliação do modelo e implementação da solução desenvolvida. O universo estudado foi o de empresas do setor de serviços que atuam nas cidades de São Paulo e do Rio de Janeiro e uma pesquisa quantitativa foi realizada por meio da aplicação de um questionário a 67 respondentes. Nesta pesquisa, foi investigado o nível de utilização das etapas dos processos de descoberta de conhecimento em bases de dados, as técnicas de mineração utilizadas, bem como as estratégias de relacionamento adotadas com clientes. Constatou-se que as empresas pesquisadas possuem um alto nível de utilização das etapas de descoberta de conhecimento identificadas na
literatura, que elas utilizam de forma uniforme apenas algumas das técnicas de mineração de dados identificadas na literatura e que, do ponto de vista de estratégias de relacionamento com clientes, as estratégias de aquisição de novos clientes e identificação dos melhores clientes possuem um nível de utilização superior ao de estratégias de retenção de clientes (considerando resultados da amostra). Esta última constatação, de certo modo, contraria o pensamento de algumas correntes teóricas, que defendem que as empresas devem focar suas estratégias de relacionamento na retenção de clientes. Estes resultados pode servir de apoio aos gestores das empresas, no que se refere aos processos de desenvolvimento de estratégias de relacionamento com clientes, sustentados em análise integrada dos aspectos de negócio envolvidos, informações sobre o cliente, bem como modelos quantitativos de análise destas informações, de forma a transformá-las em conhecimento útil para a tomada de decisão.
|
7 |
Visualização de operações de junção em sistemas de bases de dados para mineração de dados. / Visualization of join operations in DBMS for data mining.Maria Camila Nardini Barioni 13 June 2002 (has links)
Nas últimas décadas, a capacidade das empresas de gerar e coletar informações aumentou rapidamente. Essa explosão no volume de dados gerou a necessidade do desenvolvimento de novas técnicas e ferramentas que pudessem, além de processar essa enorme quantidade de dados, permitir sua análise para a descoberta de informações úteis, de maneira inteligente e automática. Isso fez surgir um proeminente campo de pesquisa para a extração de informação em bases de dados denominado Knowledge Discovery in Databases KDD, no geral técnicas de mineração de dados DM têm um papel preponderante. A obtenção de bons resultados na etapa de mineração de dados depende fortemente de quão adequadamente o preparo dos dados é realizado. Sendo assim, a etapa de extração de conhecimento (DM) no processo de KDD, é normalmente precedida de uma etapa de pré-processamento, onde os dados que porventura devam ser submetidos à etapa de DM são integrados em uma única relação. Um problema importante enfrentado nessa etapa é que, na maioria das vezes, o usuário ainda não tem uma idéia muito precisa dos dados que devem ser extraídos. Levando em consideração a grande habilidade de exploração da mente humana, este trabalho propõe uma técnica de visualização de dados armazenados em múltiplas relações de uma base de dados relacional, com o intuito de auxiliar o usuário na preparação dos dados a serem minerados. Esta técnica permite que a etapa de DM seja aplicada sobre múltiplas relações simultaneamente, trazendo as operações de junção para serem parte desta etapa. De uma maneira geral, a adoção de junções em ferramentas de DM não é prática, devido ao alto custo computacional associado às operações de junção. Entretanto, os resultados obtidos nas avaliações de desempenho da técnica proposta neste trabalho mostraram que ela reduz esse custo significativamente, tornando possível a exploração visual de múltiplas relações de uma maneira interativa. / In the last decades the capacity of information generation and accumulation increased quickly. With the explosive growth in the volume of data, new techniques and tools are being sought to process it and to automatically discover useful information from it, leading to techniques known as Knowledge Discovery in Databases KDD where, in general, data mining DM techniques play an important role. The results of applying data mining techniques on datasets are highly dependent on proper data preparation. Therefore, in traditional DM processes, data goes through a pre-processing step that results in just one table that is submitted to mining. An important problem faced during this step is that, most of the times, the analyst doesnt have a clear idea of what portions of data should be mined. This work reckons the strong ability of human beings to interpret data represented in graphical format, to develop a technique to visualize data from multiple tables, helping human analysts when preparing data to DM. This technique allows the data mining process to be applied over multiple relations at once, bringing the join operations to become part of this process. In general, the use of multiple tables in DM tools is not practical, due to the high computational cost required to explore them. Experimental evaluation of the proposed technique shows that it reduces this cost significantly, turning it possible to visually explore data from multiple tables in an interactive way.
|
8 |
Visualização como suporte à extração e exploração de regras de associação / Vusualization as support to the extraction and exploration of association rulesYamamoto, Claudio Haruo 17 April 2009 (has links)
Desde a definção do problema de obtenção de regras de associação, vários algoritmos eficientes foram introduzidos para tratá-lo. Entretanto, ainda hoje o problema apresenta várias dificuldades práticas para os mineradores, como a determinação de limiares adequados de suporte mínimo e confiança mínima, a manipulação de grandes conjuntos de regras, e a compreensão de regras (especialmente aquelas contendo muitos itens). Para tratar estes problemas, pesquisadores têm investigado a aplicação de técnicas interativas, sumarização (de conjuntos de regras) e representações visuais. Entretanto, nenhuma abordagem na qual os usuários podem entender e controlar o processo por meio da interação com o algoritmo analítico ao longo de sua execução foi introduzida. Neste trabalho, é introduzida uma abordagem interativa para extração e exploração de regras de associação que insere o usuário no processo por meio de: execução interativa do Apriori ; seleção interativa de itemsets freqüentes; extração de regras baseada em itemsets e orientada por agrupamentos de itemsets similares; e exploração de regras aos pares. Para validar a abordagem, foram realizados diversos estudos, apoiados pelo Sistema \'I IND.2\' E, com o objetivo de: comparar a abordagem interativa, sob diversos aspectos, com uma abordagem convencional de obtenção de regras de associação; avaliar o efeito de variar alguns parâmetros do processo nos resultados finais; e mostrar a aplicação dos recursos oferecidos em situações reais e com usuários reais. Os resultados indicam que a abordagem apresentada é adequada, tanto em cenários exploratórios quanto em cenários em que há um direcionamento inicial para o processo, à execução de certas tarefas de extração de regras de associação, pois: provém recursos capazes de evitar execuções inteiras do algoritmo antes que os resultados sejam analisados; gera conjuntos de regras mais compactos; preserva a cobertura de itemsets; favorece a reformulação de tarefas ou a formulação de novas tarefas; e provê meios para comparação visual de regras, aumentando o poder de análise do minerador / Since the definition of the association rule mining problem, many efficient algorithms have been introduced to deal with it. However, the problem still presents many practical difficulties to the miners, such as the determination of suitable minimum support and minimum confidence thresholds, manipulation of large rule sets, and comprehension of rules (specially those containing many items). In order to deal with these problems, researchers have been investigating the application of interactive techniques, sumarization (of rule sets) and visual representations. Nonetheless, no approach in which users can understand and control the process through interaction with the analytical algorithm along its execution has been introduced. We introduce an interactive approach to extract and explore association rules that inserts the user into the process through: interactive execution of the Apriori ; interactive selection of frequent itemsets; itemset-based and cluster-oriented extraction of rules; and pairwise exploration of rules. To validate the approach, several studies have been conducted, supported by the \'I IND.2\' E System, aiming at: comparing the interactive approach, under several aspects, with a conventional approach to obtain association rules; evaluate the effect of different execution parameters in the final results; and illustrate its application in real situations and with real users. Results of these studies indicate that the approach is adequate, both in exploratory scenarios and in scenarios in which there is an initial guidance for the process, to the execution of certain association rule extraction tasks, because: it provides resources to avoid complete algorithm executions before results are analyzed; generates more compact rule sets for exploration; preserves rule diversity; favors the reformulation of tasks; and provides support for rule comparison, enhancing analysis capability for miners
|
9 |
Visualização como suporte à extração e exploração de regras de associação / Vusualization as support to the extraction and exploration of association rulesClaudio Haruo Yamamoto 17 April 2009 (has links)
Desde a definção do problema de obtenção de regras de associação, vários algoritmos eficientes foram introduzidos para tratá-lo. Entretanto, ainda hoje o problema apresenta várias dificuldades práticas para os mineradores, como a determinação de limiares adequados de suporte mínimo e confiança mínima, a manipulação de grandes conjuntos de regras, e a compreensão de regras (especialmente aquelas contendo muitos itens). Para tratar estes problemas, pesquisadores têm investigado a aplicação de técnicas interativas, sumarização (de conjuntos de regras) e representações visuais. Entretanto, nenhuma abordagem na qual os usuários podem entender e controlar o processo por meio da interação com o algoritmo analítico ao longo de sua execução foi introduzida. Neste trabalho, é introduzida uma abordagem interativa para extração e exploração de regras de associação que insere o usuário no processo por meio de: execução interativa do Apriori ; seleção interativa de itemsets freqüentes; extração de regras baseada em itemsets e orientada por agrupamentos de itemsets similares; e exploração de regras aos pares. Para validar a abordagem, foram realizados diversos estudos, apoiados pelo Sistema \'I IND.2\' E, com o objetivo de: comparar a abordagem interativa, sob diversos aspectos, com uma abordagem convencional de obtenção de regras de associação; avaliar o efeito de variar alguns parâmetros do processo nos resultados finais; e mostrar a aplicação dos recursos oferecidos em situações reais e com usuários reais. Os resultados indicam que a abordagem apresentada é adequada, tanto em cenários exploratórios quanto em cenários em que há um direcionamento inicial para o processo, à execução de certas tarefas de extração de regras de associação, pois: provém recursos capazes de evitar execuções inteiras do algoritmo antes que os resultados sejam analisados; gera conjuntos de regras mais compactos; preserva a cobertura de itemsets; favorece a reformulação de tarefas ou a formulação de novas tarefas; e provê meios para comparação visual de regras, aumentando o poder de análise do minerador / Since the definition of the association rule mining problem, many efficient algorithms have been introduced to deal with it. However, the problem still presents many practical difficulties to the miners, such as the determination of suitable minimum support and minimum confidence thresholds, manipulation of large rule sets, and comprehension of rules (specially those containing many items). In order to deal with these problems, researchers have been investigating the application of interactive techniques, sumarization (of rule sets) and visual representations. Nonetheless, no approach in which users can understand and control the process through interaction with the analytical algorithm along its execution has been introduced. We introduce an interactive approach to extract and explore association rules that inserts the user into the process through: interactive execution of the Apriori ; interactive selection of frequent itemsets; itemset-based and cluster-oriented extraction of rules; and pairwise exploration of rules. To validate the approach, several studies have been conducted, supported by the \'I IND.2\' E System, aiming at: comparing the interactive approach, under several aspects, with a conventional approach to obtain association rules; evaluate the effect of different execution parameters in the final results; and illustrate its application in real situations and with real users. Results of these studies indicate that the approach is adequate, both in exploratory scenarios and in scenarios in which there is an initial guidance for the process, to the execution of certain association rule extraction tasks, because: it provides resources to avoid complete algorithm executions before results are analyzed; generates more compact rule sets for exploration; preserves rule diversity; favors the reformulation of tasks; and provides support for rule comparison, enhancing analysis capability for miners
|
10 |
Análise de grandezas cinemáticas e dinâmicas inerentes à hemiparesia através da descoberta de conhecimento em bases de dados / Analysis of kinematic and dynamic data inherent to hemiparesis through knowledge discovery in databasesMoretti, Caio Benatti 31 March 2016 (has links)
Em virtude de uma elevada expectativa de vida mundial, faz-se crescente a probabilidade de ocorrer acidentes naturais e traumas físicos no cotidiano, o que ocasiona um aumento na demanda por reabilitação. A terapia física, sob o paradigma da reabilitação robótica com serious games, oferece maior motivação e engajamento do paciente ao tratamento, cujo emprego foi recomendado pela American Heart Association (AHA), apontando a mais alta avaliação (Level A) para pacientes internados e ambulatoriais. No entanto, o potencial de análise dos dados coletados pelos dispositivos robóticos envolvidos é pouco explorado, deixando de extrair informações que podem ser de grande valia para os tratamentos. O foco deste trabalho consiste na aplicação de técnicas para descoberta de conhecimento, classificando o desempenho de pacientes diagnosticados com hemiparesia crônica. Os pacientes foram inseridos em um ambiente de reabilitação robótica, fazendo uso do InMotion ARM, um dispositivo robótico para reabilitação de membros superiores e coleta dos dados de desempenho. Foi aplicado sobre os dados um roteiro para descoberta de conhecimento em bases de dados, desempenhando pré-processamento, transformação (extração de características) e então a mineração de dados a partir de algoritmos de aprendizado de máquina. A estratégia do presente trabalho culminou em uma classificação de padrões com a capacidade de distinguir lados hemiparéticos sob uma precisão de 94%, havendo oito atributos alimentando a entrada do mecanismo obtido. Interpretando esta coleção de atributos, foi observado que dados de força são mais significativos, os quais abrangem metade da composição de uma amostra. / As a result of a higher life expectancy, the high probability of natural accidents and traumas occurences entails an increasing need for rehabilitation. Physical therapy, under the robotic rehabilitation paradigm with serious games, offers the patient better motivation and engagement to the treatment, being a method recommended by American Heart Association (AHA), pointing the highest assessment (Level A) for inpatients and outpatients. However, the rich potential of the data analysis provided by robotic devices is poorly exploited, discarding the opportunity to aggregate valuable information to treatments. The aim of this work consists of applying knowledge discovery techniques by classifying the performance of patients diagnosed with chronic hemiparesis. The patients, inserted into a robotic rehabilitation environment, exercised with the InMotion ARM, a robotic device for upper-limb rehabilitation which also does the collection of performance data. A Knowledge Discovery roadmap was applied over collected data in order to preprocess, transform and perform data mining through machine learning methods. The strategy of this work culminated in a pattern classification with the abilty to distinguish hemiparetic sides with an accuracy rate of 94%, having eight attributes feeding the input of the obtained mechanism. The interpretation of these attributes has shown that force-related data are more significant, comprising half of the composition of a sample.
|
Page generated in 0.112 seconds