Spelling suggestions: "subject:"descripteurs visuell"" "subject:"descripteurs visuelle""
1 |
Vers une description efficace du contenu visuel pour l'annotation automatique d'imagesHervé, Nicolas 08 June 2009 (has links) (PDF)
Les progrès technologiques récents en matière d'acquisition de données multimédia ont conduit à une croissance exponentielle du nombre de contenus numériques disponibles. Pour l'utilisateur de ce type de bases de données, la recherche d'informations est très problématique car elle suppose que les contenus soient correctement annotés. Face au rythme de croissance de ces volumes, l'annotation manuelle présente aujourd'hui un coût prohibitif. Dans cette thèse, nous nous intéressons aux approches produisant des annotations automatiques qui tentent d'apporter une réponse à ce problème. Nous nous intéressons aux bases d'images généralistes (agences photo, collections personnelles), c'est à dire que nous ne disposons d'aucun a priori sur leur contenu visuel. Contrairement aux nombreuses bases spécialisées (médicales, satellitaires, biométriques, ...) pour lesquelles il est important de tenir compte de leur spécificité lors de l'élaboration d'algorithmes d'annotation automatique, nous restons dans un cadre générique pour lequel l'approche choisie est facilement extensible à tout type de contenu.<br /><br />Pour commencer, nous avons revisité une approche standard basée sur des SVM et examiné chacune des étapes de l'annotation automatique. Nous avons évalué leur impact sur les performances globales et proposé plusieurs améliorations. La description visuelle du contenu et sa représentation sont sans doute les étapes les plus importantes puisqu'elles conditionnent l'ensemble du processus. Dans le cadre de la détection de concepts visuels globaux, nous montrons la qualité des descripteurs de l'équipe Imedia et proposons le nouveau descripteur de formes LEOH. D'autre part, nous utilisons une représentation par sacs de mots visuels pour décrire localement les images et détecter des concepts plus fins. Nous montrons que, parmi les différentes stratégies existantes de sélection de patches, l'utilisation d'un échantillonnage dense est plus efficace. Nous étudions différents algorithmes de création du vocabulaire visuel nécessaire à ce type d'approche et observons les liens existants avec les descripteurs utilisés ainsi que l'impact de l'introduction de connaissance à cette étape. Dans ce cadre, nous proposons une nouvelle approche utilisant des paires de mots visuels permettant ainsi la prise en compte de contraintes géométriques souples qui ont été, par nature, ignorées dans les approches de type sacs de mots. Nous utilisons une stratégie d'apprentissage statistique basée sur des SVM. Nous montrons que l'utilisation d'un noyau triangulaire offre de très bonnes performances et permet, de plus, de réduire les temps de calcul lors des phases d'apprentissage et de prédiction par rapport aux noyaux plus largement utilisés dans la littérature. La faisabilité de l'annotation automatique n'est envisageable que s'il existe une base suffisamment annotée pour l'apprentissage des modèles. Dans le cas contraire, l'utilisation du bouclage de pertinence, faisant intervenir l'utilisateur, est une approche efficace pour la création de modèles sur des concepts visuels inconnus jusque là, ou en vue de l'annotation de masse d'une base. Dans ce cadre, nous introduisons une nouvelle stratégie permettant de mixer les descriptions visuelles globales et par sac de mots.<br /><br />Tous ces travaux ont été évalués sur des bases d'images qui correspondent aux conditions d'utilisation réalistes de tels systèmes dans le monde professionnel. Nous avons en effet montré que la plupart des bases d'images utilisées par les académiques de notre domaine sont souvent trop simples et ne reflètent pas la diversité des bases réelles. Ces expérimentations ont mis en avant la pertinence des améliorations proposées. Certaines d'entre elles ont permis à notre approche d'obtenir les meilleures performances lors de la campagne d'évaluation ImagEVAL.
|
2 |
Contributions pour la Recherche d'Images par Composantes VisuellesFauqueur, Julien 21 November 2003 (has links) (PDF)
Dans le contexte de la recherche d'information par le contenu visuel, lorsque l'utilisateur formule une requête visuelle, sa cible de recherche est rarement représentée par une image entière comme le suppose le paradigme classique de recherche par une image exemple. L'image ne doit pas être traitée comme une unité atomique, car elle est généralement constituée d'un ensemble composite de zones visuelles exprimant une certaine sémantique.<br /><br /> Un système de recherche d'information visuelle doit permettre à l'utilisateur de désigner d'une manière explicite la cible visuelle qu'il recherche se rapportant aux différentes composantes de l'image. Notre objectif au cours de ce travail a été de réfléchir à comment définir des clés de recherche visuelle permettant à l'utilisateur d'exprimer cette cible visuelle, de concevoir et d'implémenter efficacement les méthodes correspondantes.<br /><br /> Les contributions originales de cette thèse portent sur de nouvelles approches permettant de retrouver des images à partir de leurs différentes composantes visuelles selon deux paradigmes de recherche distincts.<br /><br /> Le premier paradigme est celui de la recherche par région exemple. Il consiste à retrouver les images comportant une partie d'image similaire à une partie visuelle requête. Pour ce paradigme, nous avons mis au point une approche de segmentation grossière en régions et de description fine de ces régions ensuite. Les régions grossières des images de la base, extraites par notre nouvel algorithme de segmentation non supervisée, représentent les composantes visuellement saillantes de chaque image. Cette décomposition permet à l'utilisateur de désigner séparément une région d'intérêt pour sa requête. La recherche de régions similaires dans les images de la base repose sur un nouveau descripteur de régions (ADCS). Il offre une caractérisation fine, compacte et adaptative de l'apparence photométrique des régions, afin de tenir compte de la spécificité d'une base de descripteurs de régions. Dans cette nouvelle approche, la segmentation est rapide et les régions extraites sont intuitives pour l'utilisateur. La finesse de description des régions améliore la similarité des régions retournées par rapport aux descripteurs existants, compte tenu de la fidélité accrue au contenu des régions.<br /><br /> Notre seconde contribution porte sur l'élaboration d'un nouveau paradigme de recherche d'images par composition logique de catégories de régions. Ce paradigme présente l'avantage d'apporter une solution au problème de la page zéro. Il permet d'atteindre les images, quand elles existent dans la base, qui se rapprochent de la représentation mentale de la cible visuelle de l'utilisateur. Ainsi aucune image ou région exemple n'est nécessaire au moment de la formulation de la requête. Ce paradigme repose sur la génération non-supervisée d'un thésaurus photométrique constitué par le résumé visuel des régions de la base. Pour formuler sa requête, l'utilisateur accède directement à ce résumé en disposant d'opérateurs de composition logique de ces différentes parties visuelles. Il est à noter qu'un item visuel dans ce résumé est un représentant d'une classe photométrique de régions. Les requêtes logiques sur le contenu des images s'apparentent à celles en recherche de texte. L'originalité de ce paradigme ouvre des perspectives riches pour de futurs travaux en recherche d'information visuelle.
|
3 |
Contributions to generic and affective visual concept recognition / Contribution à la reconnaissance de concepts visuels génériques et émotionnelsLiu, Ningning 22 November 2013 (has links)
Cette thèse de doctorat est consacrée à la reconnaissance de concepts visuels (VCR pour "Visual Concept Recognition"). En raison des nombreuses difficultés qui la caractérisent, cette tâche est toujours considérée comme l’une des plus difficiles en vision par ordinateur et reconnaissance de formes. Dans ce contexte, nous avons proposé plusieurs contributions, particulièrement dans le cadre d’une approche de reconnaissance multimodale combinant efficacement les informations visuelles et textuelles. Tout d’abord, nous avons étudié différents types de descripteurs visuels de bas-niveau sémantique pour la tâche de VCR incluant des descripteurs de couleur, de texture et de forme. Plus précisément, nous pensons que chaque concept nécessite différents descripteurs pour le caractériser efficacement pour permettre sa reconnaissance automatique. Ainsi, nous avons évalué l’efficacité de diverses représentations visuelles, non seulement globales comme la couleur, la texture et la forme, mais également locales telles que SIFT, Color SIFT, HOG, DAISY, LBP et Color LBP. Afin de faciliter le franchissement du fossé sémantique entre les descripteurs bas-niveau et les concepts de haut niveau sémantique, et particulièrement ceux relatifs aux émotions, nous avons proposé des descripteurs visuels de niveau intermédiaire basés sur l’harmonie visuelle et le dynamisme exprimés dans les images. De plus, nous avons utilisé une décomposition spatiale pyramidale des images pour capturer l’information locale et spatiale lors de la construction des descripteurs d’harmonie et de dynamisme. Par ailleurs, nous avons également proposé une nouvelle représentation reposant sur les histogrammes de couleur HSV en utilisant un modèle d’attention visuelle pour identifier les régions d’intérêt dans les images. Ensuite, nous avons proposé un nouveau descripteur textuel dédié au problème de VCR. En effet, la plupart des photos publiées sur des sites de partage en ligne (Flickr, Facebook, ...) sont accompagnées d’une description textuelle sous la forme de mots-clés ou de légende. Ces descriptions constituent une riche source d’information sur la sémantique contenue dans les images et il semble donc particulièrement intéressant de les considérer dans un système de VCR. Ainsi, nous avons élaboré des descripteurs HTC ("Histograms of Textual Concepts") pour capturer les liens sémantiques entre les concepts. L’idée générale derrière HTC est de représenter un document textuel comme un histogramme de concepts textuels selon un dictionnaire (ou vocabulaire), pour lequel chaque valeur associée à un concept est l’accumulation de la contribution de chaque mot du texte pour ce concept, en fonction d’une mesure de distance sémantique. Plusieurs variantes de HTC ont été proposées qui se sont révélées être très efficaces pour la tâche de VCR. Inspirés par la démarche de l’analyse cepstrale de la parole, nous avons également développé Cepstral HTC pour capturer à la fois l’information de fréquence d’occurrence des mots (comme TF-IDF) et les liens sémantiques entre concepts fournis par HTC à partir des mots-clés associés aux images. Enfin, nous avons élaboré une méthode de fusion (SWLF pour "Selective Weighted Later Fusion") afin de combiner efficacement différentes sources d’information pour le problème de VCR. Cette approche de fusion est conçue pour sélectionner les meilleurs descripteurs et pondérer leur contribution pour chaque concept à reconnaître. SWLF s’est révélé être particulièrement efficace pour fusion des modalités visuelles et textuelles, par rapport à des schémas de fusion standards. [...] / This Ph.D thesis is dedicated to visual concept recognition (VCR). Due to many realistic difficulties, it is still considered to be one of the most challenging problems in computer vision and pattern recognition. In this context, we have proposed some innovative contributions for the task of VCR, particularly in building multimodal approaches that efficiently combine visual and textual information. Firstly, we have proposed semantic features for VCR and have investigated the efficiency of different types of low-level visual features for VCR including color, texture and shape. Specifically, we believe that different concepts require different features to efficiently characterize them for the recognition. Therefore, we have investigated in the context of VCR various visual representations, not only global features including color, shape and texture, but also the state-of-the-art local visual descriptors such as SIFT, Color SIFT, HOG, DAISY, LBP, Color LBP. To help bridging the semantic gap between low-level visual features and high level semantic concepts, and particularly those related to emotions and feelings, we have proposed mid-level visual features based on the visual harmony and dynamism semantics using Itten’s color theory and psychological interpretations. Moreover, we have employed a spatial pyramid strategy to capture the spatial information when building our mid-level features harmony and dynamism. We have also proposed a new representation of color HSV histograms by employing a visual attention model to identify the regions of interest in images. Secondly, we have proposed a novel textual feature designed for VCR. Indeed, most of online-shared photos provide textual descriptions in the form of tags or legends. In fact, these textual descriptions are a rich source of semantic information on visual data that is interesting to consider for the purpose of VCR or multimedia information retrieval. We propose the Histograms of Textual Concepts (HTC) to capture the semantic relatedness of concepts. The general idea behind HTC is to represent a text document as a histogram of textual concepts towards a vocabulary or dictionary, whereas its value is the accumulation of the contribution of each word within the text document toward the underlying concept according to a predefined semantic similarity measure. Several variants of HTC have been proposed that revealed to be very efficient for VCR. Inspired by the Cepstral speech analysis process, we have also developed Cepstral HTC to capture both term frequency-based information (like TF-IDF) and the relatedness of semantic concepts in the sparse image tags, which overcomes the HTC’s shortcoming of ignoring term frequency-based information. Thirdly, we have proposed a fusion scheme to combine different sources of Later Fusion, (SWLF) is designed to select the best features and to weight their scores for each concept to be recognized. SWLF proves particularly efficient for fusing visual and textual modalities in comparison with some other standard fusion schemes. While a late fusion at score level is reputed as a simple and effective way to fuse features of different nature for machine-learning problems, the proposed SWLF builds on two simple insights. First, the score delivered by a feature type should be weighted by its intrinsic quality for the classification problem at hand. Second, in a multi-label scenario where several visual concepts may be assigned to an image, different visual concepts may require different features which best recognize them. In addition to SWLF, we also propose a novel combination approach based on Dempster-Shafer’s evidence theory, whose interesting properties allow fusing different ambiguous sources of information for visual affective recognition. [...]
|
Page generated in 0.0563 seconds