• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Seed Demography Model for Finding Optimal Strategies for Desert Annuals

Wilcott, J. Curtis 01 May 1973 (has links)
A theoretical investigation of the factors that affect the population dynamics of annual plants growing in deserts was conducted through the use of computer modeling techniques. A series of three models of the yearly life cycle of desert annuals was constructed and their behavior examined. The dissertation centers around the third and most complex model, a computer simulation model with distinguishable seed cohorts in a randomly varying rainfall environment. A typical simulation run was for 80 years and cost $1.00. The five plant functions were (l} seed losses (mainly predation) as a function of seed age, (2) seed dormancy as a function of seed ages (3) percent germination of the non-dormant seeds in response to germinating rainfall, (4) percent survival from the seedling stage to maturity as a function of total rainfall over the growing season and seedling density, and (5) seeds produced per p 1 ant as a function of total rainfall over the growing season and density of mature plants. The stochasitc rainfall generator used historical rainfall probabilities from US Weather Bureau stations at Las Vegas, Nevada and Tucson, Arizona. The literature on desert annuals was carefully searched to provide supporting data for the plant functions used in the simulation model. Most of the data is for winter annuals growing on the Nevada Test Site near Las Vegas. Single species data are rare, so the model functions reflected the average plant responses for winter annuals as a group. This base run set of functions reproduced the observed data quite well. Sensitivity analysis of the simulation model indicated that in order to persist in the Las Vegas area, the seeds of annuals should have at least a one-year period of dormancy and a minimum threshold of about 15 mm of germinating rainfall. The age distribution of the seed reserves in the soil and the percent germinable is strongly influenced by the recent rainfall history of the site and the seed loss rate. The optimum balance is when the losses of older seeds from the seed reserves due to germination is the same size as the sum of the non-productive losses (e.g., predation). Several experiments are suggested -- some to cover gaps in the published data and some that became evident through the sensitivity analysis of the model itself.
2

The Influence of Biogeography and Mating System on the Ecology of Desert Annual Plants

Gerst, Katharine Laura January 2011 (has links)
A major challenge in plant ecology is in understanding how species strategies mediate interactions between the environment and fitness. Variation in niche strategies that affect phenological, physiological, and reproductive traits will allow species to partition resources differently in space and time, allowing for coexistence of many species and strategies within a community. How species differentially respond to variable environments will ultimately influence their population dynamics and geographic distribution. This dissertation approaches this topic from two perspectives: (a) examining the interaction between biogeography and variable demographic strategies in desert annual plants, and (b) examining the costs and benefits of contrasting reproductive strategies in co-occurring selfing and outcrossing desert annuals. Firstly, I tested the abundant center model to determine the role of range position on plant population dynamics. I examined how the geographic and climatic position of 13 desert annuals found at a common location, the Desert Laboratory at Tumamoc Hill in Tucson, Arizona, related to their demography over a 25-year time span. I found that species for which the Desert Laboratory was close to the center of their geographic range have less variable long-term survival and fecundity compared to species for which the Desert Laboratory was further from the center of their range. Secondly, I studied how related species with contrasting mating systems respond to variable environments to affect plant performance. In a three-year field study I investigated how inter-annual variation in plant reproductive phenology affects synchrony with pollinators and herbivores. Since selfing species are guaranteed to reproduce in the absence of pollinators, seasonal and annual variation in phenology resulted in less variable plant reproductive success compared to outcrossing species. Greater variation in reproduction in outcrossing species resulted from asynchrony in some years between plants and pollinators. In a greenhouse study examining the interaction between mating system and drought, I found that the physiological functioning and survival of outcrossing species was more strongly negatively affected by drought conditions, suggesting that selfing species have an advantage in more arid environments. These studies demonstrate how plant reproductive and physiological strategies can play a critical role in influencing fitness, population dynamics and geographic distribution.

Page generated in 0.0421 seconds