• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hibernation Ecology of Bats Using Three High-Elevation Caves in Northern Arizona: Implications for Potential White-nose Syndrome Impacts on Desert Southwest Species

January 2020 (has links)
abstract: Desert ecosystems of the southwest United States are characterized by hot and arid climates, but hibernating bats can be found at high altitudes. The emerging fungal infection, white-nose syndrome, causes mortality in hibernating bat populations across eastern North America and the pathogen is increasingly observed in western regions. However, little is known about the ecology of hibernating bats in the southwest, which can help predict how these populations may respond to the fungus. My study investigated hibernating bats during two winters (2018-2019/2019-2020) at three caves in northern Arizona to: (1) describe diversity and abundance of hibernating bats using visual internal surveys and photographic documentation, (2) determine the duration of hibernation by recording bat echolocation call sequences outside caves and recording bat activity in caves using visual inspection, and (3) describe environmental conditions where hibernating bats are roosting. Adjacent to bats, I collected temperature and relative humidity, which I converted into absolute humidity. I documented hibernation status (i.e. active vs. not active) and roosting body position (i.e. open, partially hidden, and hidden). Between September 2018 and April 2019, 246 bat observations were recorded across the three caves. The majority of bats were identified as Myotis spp. (45.9\%, n=113), followed by Corynorhinus townsendii (45.5\%, n=112), Parastrellus hesperus (4.8\%, n=12), Eptesicus fuscus (3.6\%, n=9). Between September 2019 and April 2020, I documented a total of 361 bat observations across the three caves. C. townsendii was most prevalent (52.9\%, n=191), followed by the category P. hesperus/Myotis spp. (25.7\%, n=93), Myotis spp. (12.4\%, n=45), P. Hesperus (4.4\%, n=16), E. fuscus (3.6\%, n=13) and Unknown (0.8\%, n=3). Average conditions adjacent to bats were, temperature=12.5ºC, relative humidity=53\%, and absolute humidity=4.9 g/kg. Hibernating bats were never observed in large clusters and the maximum hibernating population size was 24, suggesting low risk for pathogen transmission among bats. Hibernation lasted approximately 120 days, with minimal activity documented inside and outside caves. Hibernating bats in northern Arizona may be at low risk for white-nose syndrome based on population size, hibernation length, roosting behavior, and absolute humidity, but other variables (e.g. temperature) indicate the potential for white-nose syndrome impacts on these populations. / Dissertation/Thesis / Masters Thesis Biology 2020

Page generated in 0.0711 seconds