• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Growth and design strategies of organic dendritic networks

Ciccone, Giuseppe, Cucchi, Matteo, Gao, Yanfei, Kumar, Ankush, Seifert, Lennart Maximilian, Weissbach, Anton, Tseng, Hsin, Kleemann, Hans, Alibart, Fabien, Leo, Karl 05 March 2024 (has links)
A new paradigm of electronic devices with bio-inspired features is aiming to mimic the brain’s fundamental mechanisms to achieve recognition of very complex patterns and more efficient computational tasks. Networks of electropolymerized dendritic fibers are attracting much interest because of their ability to achieve advanced learning capabilities, form neural networks, and emulate synaptic and plastic processes typical of human neurons. Despite their potential for braininspired computation, the roles of the single parameters associated with the growth of the fiber are still unclear, and the intrinsic randomness governing the growth of the dendrites prevents the development of devices with stable and reproducible properties. In this manuscript, we provide a systematic study on the physical parameters influencing the growth, defining cause-effect relationships for direction, symmetry, thickness, and branching of the fibers. We build an electrochemical model of the phenomenon and we validate it in silico using Montecarlo simulations. This work shows the possibility of designing dendritic polymer fibers with controllable physical properties, providing a tool to engineer polymeric networks with desired neuromorphic features.

Page generated in 0.0734 seconds