• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classificação de imagens de plâncton usando múltiplas segmentações / Plankton image classification using multiple segmentations

Fernandez, Mariela Atausinchi 27 March 2017 (has links)
Plâncton são organismos microscópicos que constituem a base da cadeia alimentar de ecossistemas aquáticos. Eles têm importante papel no ciclo do carbono pois são os responsáveis pela absorção do carbono na superfície dos oceanos. Detectar, estimar e monitorar a distribuição das diferentes espécies são atividades importantes para se compreender o papel do plâncton e as consequências decorrentes de alterações em seu ambiente. Parte dos estudos deste tipo é baseada no uso de técnicas de imageamento de volumes de água. Devido à grande quantidade de imagens que são geradas, métodos computacionais para auxiliar no processo de análise das imagens estão sob demanda. Neste trabalho abordamos o problema de identificação da espécie. Adotamos o pipeline convencional que consiste dos passos de detecção de alvo, segmentação (delineação de contorno), extração de características, e classificação. Na primeira parte deste trabalho abordamos o problema de escolha de um algoritmo de segmentação adequado. Uma vez que a avaliação de resultados de segmentação é subjetiva e demorada, propomos um método para avaliar algoritmos de segmentação por meio da avaliação da classificação no final do pipeline. Experimentos com esse método mostraram que algoritmos de segmentação distintos podem ser adequados para a identificação de espécies de classes distintas. Portanto, na segunda parte do trabalho propomos um método de classificação que leva em consideração múltiplas segmentações. Especificamente, múltiplas segmentações são calculadas e classificadores são treinados individualmente para cada segmentação, os quais são então combinados para construir o classificador final. Resultados experimentais mostram que a acurácia obtida com a combinação de classificadores é superior em mais de 2% à acurácia obtida com classificadores usando uma segmentação fixa. Os métodos propostos podem ser úteis para a construção de sistemas de identificação de plâncton que sejam capazes de se ajustar rapidamente às mudanças nas características das imagens. / Plankton are microscopic organisms that constitute the basis of the food chain of aquatic ecosystems. They have an important role in the carbon cycle as they are responsible for the absorption of carbon in the ocean surfaces. Detecting, estimating and monitoring the distribution of plankton species are important activities for understanding the role of plankton and the consequences of changes in their environment. Part of these type of studies is based on the analysis of water volumes by means of imaging techniques. Due to the large quantity of generated images, computational methods for helping the process of image analysis are in demand. In this work we address the problem of species identification. We follow the conventional pipeline consisting of target detection, segmentation (contour delineation), feature extraction, and classification steps. In the first part of this work we address the problem of choosing an appropriate segmentation algorithm. Since evaluating segmentation results is a subjective and time consuming task, we propose a method to evaluate segmentation algorithms by evaluating the classification results at the end of the pipeline. Experiments with this method showed that distinct segmentation algorithms might be appropriate for identifying species of distinct classes. Therefore, in the second part of this work we propose a classification method that takes into consideration multiple segmentations. Specifically, multiple segmentations are computed and classifiers are trained individually for each segmentation, which are then combined to build the final classifier. Experimental results show that the accuracy obtained with the combined classifier is superior in more than 2% to the accuracy obtained with classifiers using a fixed segmentation. The proposed methods can be useful to build plankton identification systems that are able to quickly adjust to changes in the characteristics of the images.
2

Computer vision for continuous plankton monitoring / Visão computacional para o monitoramento contínuo de plâncton

Matuszewski, Damian Janusz 04 April 2014 (has links)
Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a consequence, there is a strong need for highly efficient systems allowing long time and large volume observation of plankton communities. This would provide us with better understanding of plankton role on global climate as well as help maintain the fragile environmental equilibrium. The adopted sensors typically provide huge amounts of data that must be processed efficiently without the need for intensive manual work of specialists. A new system for general purpose particle analysis in large volumes is presented. It has been designed and optimized for the continuous plankton monitoring problem; however, it can be easily applied as a versatile moving fluids analysis tool or in any other application in which targets to be detected and identified move in a unidirectional flux. The proposed system is composed of three stages: data acquisition, targets detection and their identification. Dedicated optical hardware is used to record images of small particles immersed in the water flux. Targets detection is performed using a Visual Rhythm-based method which greatly accelerates the processing time and allows higher volume throughput. The proposed method detects, counts and measures organisms present in water flux passing in front of the camera. Moreover, the developed software allows saving cropped plankton images which not only greatly reduces required storage space but also constitutes the input for their automatic identification. In order to assure maximal performance (up to 720 MB/s) the algorithm was implemented using CUDA for GPGPU. The method was tested on a large dataset and compared with alternative frame-by-frame approach. The obtained plankton images were used to build a classifier that is applied to automatically identify organisms in plankton analysis experiments. For this purpose a dedicated feature extracting software was developed. Various subsets of the 55 shape characteristics were tested with different off-the-shelf learning models. The best accuracy of approximately 92% was obtained with Support Vector Machines. This result is comparable to the average expert manual identification performance. This work was developed under joint supervision with Professor Rubens Lopes (IO-USP). / Microorganismos planctônicos constituem a base da cadeia alimentar marinha e desempenham um grande papel na redução do dióxido de carbono na atmosfera. Além disso, são muito sensíveis a alterações ambientais e permitem perceber (e potencialmente neutralizar) as mesmas mais rapidamente do que em qualquer outro meio. Como tal, não só influenciam a indústria da pesca, mas também são frequentemente utilizados para analisar as mudanças nas zonas costeiras exploradas e a influência destas interferências no ambiente e clima locais. Como consequência, existe uma forte necessidade de desenvolver sistemas altamente eficientes, que permitam observar comunidades planctônicas em grandes escalas de tempo e volume. Isso nos fornece uma melhor compreensão do papel do plâncton no clima global, bem como ajuda a manter o equilíbrio do frágil meio ambiente. Os sensores utilizados normalmente fornecem grandes quantidades de dados que devem ser processados de forma eficiente sem a necessidade do trabalho manual intensivo de especialistas. Um novo sistema de monitoramento de plâncton em grandes volumes é apresentado. Foi desenvolvido e otimizado para o monitoramento contínuo de plâncton; no entanto, pode ser aplicado como uma ferramenta versátil para a análise de fluídos em movimento ou em qualquer aplicação que visa detectar e identificar movimento em fluxo unidirecional. O sistema proposto é composto de três estágios: aquisição de dados, detecção de alvos e suas identificações. O equipamento óptico é utilizado para gravar imagens de pequenas particulas imersas no fluxo de água. A detecção de alvos é realizada pelo método baseado no Ritmo Visual, que acelera significativamente o tempo de processamento e permite um maior fluxo de volume. O método proposto detecta, conta e mede organismos presentes na passagem do fluxo de água em frente ao sensor da câmera. Além disso, o software desenvolvido permite salvar imagens segmentadas de plâncton, que não só reduz consideravelmente o espaço de armazenamento necessário, mas também constitui a entrada para a sua identificação automática. Para garantir o desempenho máximo de até 720 MB/s, o algoritmo foi implementado utilizando CUDA para GPGPU. O método foi testado em um grande conjunto de dados e comparado com a abordagem alternativa de quadro-a-quadro. As imagens obtidas foram utilizadas para construir um classificador que é aplicado na identificação automática de organismos em experimentos de análise de plâncton. Por este motivo desenvolveu-se um software para extração de características. Diversos subconjuntos das 55 características foram testados através de modelos de aprendizagem disponíveis. A melhor exatidão de aproximadamente 92% foi obtida através da máquina de vetores de suporte. Este resultado é comparável à identificação manual média realizada por especialistas. Este trabalho foi desenvolvido sob a co-orientacao do Professor Rubens Lopes (IO-USP).
3

Computer vision for continuous plankton monitoring / Visão computacional para o monitoramento contínuo de plâncton

Damian Janusz Matuszewski 04 April 2014 (has links)
Plankton microorganisms constitute the base of the marine food web and play a great role in global atmospheric carbon dioxide drawdown. Moreover, being very sensitive to any environmental changes they allow noticing (and potentially counteracting) them faster than with any other means. As such they not only influence the fishery industry but are also frequently used to analyze changes in exploited coastal areas and the influence of these interferences on local environment and climate. As a consequence, there is a strong need for highly efficient systems allowing long time and large volume observation of plankton communities. This would provide us with better understanding of plankton role on global climate as well as help maintain the fragile environmental equilibrium. The adopted sensors typically provide huge amounts of data that must be processed efficiently without the need for intensive manual work of specialists. A new system for general purpose particle analysis in large volumes is presented. It has been designed and optimized for the continuous plankton monitoring problem; however, it can be easily applied as a versatile moving fluids analysis tool or in any other application in which targets to be detected and identified move in a unidirectional flux. The proposed system is composed of three stages: data acquisition, targets detection and their identification. Dedicated optical hardware is used to record images of small particles immersed in the water flux. Targets detection is performed using a Visual Rhythm-based method which greatly accelerates the processing time and allows higher volume throughput. The proposed method detects, counts and measures organisms present in water flux passing in front of the camera. Moreover, the developed software allows saving cropped plankton images which not only greatly reduces required storage space but also constitutes the input for their automatic identification. In order to assure maximal performance (up to 720 MB/s) the algorithm was implemented using CUDA for GPGPU. The method was tested on a large dataset and compared with alternative frame-by-frame approach. The obtained plankton images were used to build a classifier that is applied to automatically identify organisms in plankton analysis experiments. For this purpose a dedicated feature extracting software was developed. Various subsets of the 55 shape characteristics were tested with different off-the-shelf learning models. The best accuracy of approximately 92% was obtained with Support Vector Machines. This result is comparable to the average expert manual identification performance. This work was developed under joint supervision with Professor Rubens Lopes (IO-USP). / Microorganismos planctônicos constituem a base da cadeia alimentar marinha e desempenham um grande papel na redução do dióxido de carbono na atmosfera. Além disso, são muito sensíveis a alterações ambientais e permitem perceber (e potencialmente neutralizar) as mesmas mais rapidamente do que em qualquer outro meio. Como tal, não só influenciam a indústria da pesca, mas também são frequentemente utilizados para analisar as mudanças nas zonas costeiras exploradas e a influência destas interferências no ambiente e clima locais. Como consequência, existe uma forte necessidade de desenvolver sistemas altamente eficientes, que permitam observar comunidades planctônicas em grandes escalas de tempo e volume. Isso nos fornece uma melhor compreensão do papel do plâncton no clima global, bem como ajuda a manter o equilíbrio do frágil meio ambiente. Os sensores utilizados normalmente fornecem grandes quantidades de dados que devem ser processados de forma eficiente sem a necessidade do trabalho manual intensivo de especialistas. Um novo sistema de monitoramento de plâncton em grandes volumes é apresentado. Foi desenvolvido e otimizado para o monitoramento contínuo de plâncton; no entanto, pode ser aplicado como uma ferramenta versátil para a análise de fluídos em movimento ou em qualquer aplicação que visa detectar e identificar movimento em fluxo unidirecional. O sistema proposto é composto de três estágios: aquisição de dados, detecção de alvos e suas identificações. O equipamento óptico é utilizado para gravar imagens de pequenas particulas imersas no fluxo de água. A detecção de alvos é realizada pelo método baseado no Ritmo Visual, que acelera significativamente o tempo de processamento e permite um maior fluxo de volume. O método proposto detecta, conta e mede organismos presentes na passagem do fluxo de água em frente ao sensor da câmera. Além disso, o software desenvolvido permite salvar imagens segmentadas de plâncton, que não só reduz consideravelmente o espaço de armazenamento necessário, mas também constitui a entrada para a sua identificação automática. Para garantir o desempenho máximo de até 720 MB/s, o algoritmo foi implementado utilizando CUDA para GPGPU. O método foi testado em um grande conjunto de dados e comparado com a abordagem alternativa de quadro-a-quadro. As imagens obtidas foram utilizadas para construir um classificador que é aplicado na identificação automática de organismos em experimentos de análise de plâncton. Por este motivo desenvolveu-se um software para extração de características. Diversos subconjuntos das 55 características foram testados através de modelos de aprendizagem disponíveis. A melhor exatidão de aproximadamente 92% foi obtida através da máquina de vetores de suporte. Este resultado é comparável à identificação manual média realizada por especialistas. Este trabalho foi desenvolvido sob a co-orientacao do Professor Rubens Lopes (IO-USP).
4

Classificação de imagens de plâncton usando múltiplas segmentações / Plankton image classification using multiple segmentations

Mariela Atausinchi Fernandez 27 March 2017 (has links)
Plâncton são organismos microscópicos que constituem a base da cadeia alimentar de ecossistemas aquáticos. Eles têm importante papel no ciclo do carbono pois são os responsáveis pela absorção do carbono na superfície dos oceanos. Detectar, estimar e monitorar a distribuição das diferentes espécies são atividades importantes para se compreender o papel do plâncton e as consequências decorrentes de alterações em seu ambiente. Parte dos estudos deste tipo é baseada no uso de técnicas de imageamento de volumes de água. Devido à grande quantidade de imagens que são geradas, métodos computacionais para auxiliar no processo de análise das imagens estão sob demanda. Neste trabalho abordamos o problema de identificação da espécie. Adotamos o pipeline convencional que consiste dos passos de detecção de alvo, segmentação (delineação de contorno), extração de características, e classificação. Na primeira parte deste trabalho abordamos o problema de escolha de um algoritmo de segmentação adequado. Uma vez que a avaliação de resultados de segmentação é subjetiva e demorada, propomos um método para avaliar algoritmos de segmentação por meio da avaliação da classificação no final do pipeline. Experimentos com esse método mostraram que algoritmos de segmentação distintos podem ser adequados para a identificação de espécies de classes distintas. Portanto, na segunda parte do trabalho propomos um método de classificação que leva em consideração múltiplas segmentações. Especificamente, múltiplas segmentações são calculadas e classificadores são treinados individualmente para cada segmentação, os quais são então combinados para construir o classificador final. Resultados experimentais mostram que a acurácia obtida com a combinação de classificadores é superior em mais de 2% à acurácia obtida com classificadores usando uma segmentação fixa. Os métodos propostos podem ser úteis para a construção de sistemas de identificação de plâncton que sejam capazes de se ajustar rapidamente às mudanças nas características das imagens. / Plankton are microscopic organisms that constitute the basis of the food chain of aquatic ecosystems. They have an important role in the carbon cycle as they are responsible for the absorption of carbon in the ocean surfaces. Detecting, estimating and monitoring the distribution of plankton species are important activities for understanding the role of plankton and the consequences of changes in their environment. Part of these type of studies is based on the analysis of water volumes by means of imaging techniques. Due to the large quantity of generated images, computational methods for helping the process of image analysis are in demand. In this work we address the problem of species identification. We follow the conventional pipeline consisting of target detection, segmentation (contour delineation), feature extraction, and classification steps. In the first part of this work we address the problem of choosing an appropriate segmentation algorithm. Since evaluating segmentation results is a subjective and time consuming task, we propose a method to evaluate segmentation algorithms by evaluating the classification results at the end of the pipeline. Experiments with this method showed that distinct segmentation algorithms might be appropriate for identifying species of distinct classes. Therefore, in the second part of this work we propose a classification method that takes into consideration multiple segmentations. Specifically, multiple segmentations are computed and classifiers are trained individually for each segmentation, which are then combined to build the final classifier. Experimental results show that the accuracy obtained with the combined classifier is superior in more than 2% to the accuracy obtained with classifiers using a fixed segmentation. The proposed methods can be useful to build plankton identification systems that are able to quickly adjust to changes in the characteristics of the images.

Page generated in 0.0858 seconds