1 |
A polynomial time algorithm for prime recognitionDomingues, Riaal 21 August 2007 (has links)
Prime numbers are of the utmost importance in many applications and in particular cryptography. Firstly, number theory background is introduced in order to present the non-deterministic Solovay-Strassen primality test. Sec- ondly, the deterministic primality test discovered by Agrawal, Kayal and Sax- ena in 2002 is presented with the proofs following their original paper. Lastly, a remark will be made about the practical application of the deterministic algorithm versus using the non-deterministic algorithms in applications. / Dissertation (MSc (Applied Mathematics))--University of Pretoria, 2007. / Mathematics and Applied Mathematics / MSc / unrestricted
|
2 |
Parallel and Deterministic Algorithms for MRFs: Surface Reconstruction and IntegrationGeiger, Davi, Girosi, Federico 01 May 1989 (has links)
In recent years many researchers have investigated the use of Markov random fields (MRFs) for computer vision. The computational complexity of the implementation has been a drawback of MRFs. In this paper we derive deterministic approximations to MRFs models. All the theoretical results are obtained in the framework of the mean field theory from statistical mechanics. Because we use MRFs models the mean field equations lead to parallel and iterative algorithms. One of the considered models for image reconstruction is shown to give in a natural way the graduate non-convexity algorithm proposed by Blake and Zisserman.
|
3 |
Algorithms for finite rings / Algorithmes pour les anneaux finisCiocanea teodorescu, Iuliana 22 June 2016 (has links)
Cette thèse s'attache à décrire des algorithmes qui répondent à des questions provenant de la théorie des anneaux et des modules. Nous restreindrons essentiellement notre étude à des algorithmes déterministes, en temps polynomial, ainsi qu'aux anneaux et modules finis. Le premier des principaux résultats de cette thèse concerne le problème de l'isomorphisme entre modules : nous décrivons deux algorithmes distincts qui, étant donnée un anneau fini R et deux R-modules M et N finis, déterminent si M et N sont isomorphes. S'ils le sont, les deux algorithmes exhibent un tel isomorphisme. De plus, nous montrons comment calculer un ensemble de générateurs de taille minimale pour un module donné, et comment construire des couvertures projectives et des enveloppes injectives. Nous décrivons ensuite des tests mettant en évidence le caractère simple, projectif ou injectif d'un module, ainsi qu'un test constructif de l'existence d'un homomorphisme demodules surjectif entre deux modules finis, l'un d'entre eux étant projectif. Par contraste, nous montrons le résultat négatif suivant : le problème consistant à tester l'existence d'un homomorphisme de modules injectif entre deux modules, l'un des deux étant projectif, est NP-complet.La dernière partie de cette thèse concerne le problème de l'approximation du radical de Jacobson d'un anneau fini. Il s'agit de déterminer un idéal bilatère nilpotent tel que l'anneau quotient correspondant soit \presque" semi-simple. La notion de \semi-simplicité approchée" que nous utilisons est la séparabilité. / In this thesis we are interested in describing algorithms that answer questions arising in ring and module theory. Our focus is on deterministic polynomial-time algorithms and rings and modules that are finite. The first main result of this thesis concerns the module isomorphism problem: we describe two distinct algorithms that, given a finite ring R and two finite R-modules M and N, determine whether M and N are isomorphic. If they are, the algorithms exhibit such a isomorphism. In addition, we show how to compute a set of generators of minimal cardinality for a given module, and how to construct projective covers and injective hulls. We also describe tests for module simplicity, projectivity, and injectivity, and constructive tests for existence of surjective module homomorphisms between two finite modules, one of which is projective. As a negative result, we show that the problem of testing for existence of injective module homomorphisms between two finite modules, one of which is projective, is NP-complete. The last part of the thesis is concerned with finding a good working approximation of the Jacobson radical of a finite ring, that is, a two-sided nilpotent ideal such that the corresponding quotient ring is \almost" semisimple. The notion we use to approximate semisimplicity is that of separability.
|
Page generated in 0.1066 seconds