• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Autonomous and Intelligent Radio Switching

Duan, Quiyi 13 August 2008 (has links) (PDF)
With the proliferation of mobile applications and the abundance of wireless devices, it is increasingly common for devices to support multiple radios. When two devices are communicating they should choose the best available radio based on user preference and application requirements. This type of “radio switching” should happen automatically, so that the system optimizes performance dynamically. To achieve this objective, we design an Autonomous and Intelligent Radio Switching (AIRS) system to leverage the radio heterogeneity common in today's wireless devices. The AIRS system consists of three key components. First, we design a radio preference evaluation module to dynamically select the best radio according to users' preference, application's QoS requirements, and the device battery usage. Second, we propose a link quality measurement and prediction module to predict the radio quality under a variety of mobility and interference conditions. Third, we present a radio switching decision making module to switch to the preferred available radio intelligently, based on the preference and link quality evaluations. The AIRS system maintains connectivity, as well as improves link quality, via dynamic and intelligent radio switching, regardless of interference or collisions from the interfaces of other devices. The radio preference evaluation module is able to generate and adjust a preference list dynamically. Multiple users' requirements are satisfied in a mutually beneficial manner and the selected radio is Pareto optimal. The link prediction module is able to achieve an accuracy above 90% under a variety of mobility and interference conditions. The module can dynamically increase the link measurement interval and significantly reduce its power consumption, without sacrificing accuracy. The decision algorithm uses several parameters to avoid switching radios too frequently, and is able to provide dynamic, but stable radio switching, while balancing the competing objectives of high throughput and low power consumption. Overall, the AIRS system is able to achieve high goodput (application level throughput) and long battery life as applied to handoff management in a frequently changing mobile environment.

Page generated in 0.428 seconds