• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Role of RASSF1A in intestinal inflammation

Zhao, YUewen Unknown Date
No description available.
2

Úloha bakterií,mukózního imunitního syst=ému a jejich interakce v patogenezi zánětlivých střevních onemocnění / Role of bacteria and mucosal immune system and their interaction in the pathogenesis of inflammatory bowel disease

Du, Zhengyu January 2017 (has links)
Although the etiology and pathogenesis of inflammatory bowel disease (IBD) is not fully understood, it is generally accepted that the inflammation results from aberrant immune responses to antigens of gut microbiota in genetically susceptible individuals (Sartor et al., 2006). Alteration in intestinal microbiota has been found in IBD patients with increased abundance of certain bacteria and decreased abundance of others. Due to the complexity of the disease, multifaceted interactions between genetic factors, host immune response, gut microbiota and environment factors need to be taken into account. In this thesis, the pathogenesis of IBD was first reviewed in respect with the four factors mentioned above. Then we concentrated on the interaction between IBD-associated bacteria and mucosal immune system. We investigated the ability of mucosal-associated bacteria (MAB) from IBD patients to induce spontaneous colitis in germ-free (GF) mice and the impact of those bacteria on the development of dextran sulfate sodium (DSS)-colitis. Together with the analysis of the composition of gut microbiota of MAB colonized mice, we demonstrated the potential deleterious microbes were able to increase the susceptibility to DSS-colitis once they found a suitable niche. We revealed the mechanism of an E.coli strain...

Page generated in 0.089 seconds